Target-Centric Firmware Rehosting with Penguin

Andrew Fasano'$, Zachary Estradaf™, Luke CraigT, Ben LevyT, Jordan McLeod!, Jacques Beckerf, Caden Klinef,
Elysia Witham', Cole DiLorenzo®, Ali Bobif, Dinko Dermendzhiev”, Tim Leek’, Wil Robertson$
MIT Lincoln Laboratory! Northeastern University® Georgia Institute of Technology!!
{fasano, zje, luke.craig} @mit.edu Benjamin.Levy @I1l.mit.edu jmcleod @mit.edu
{Jacques.Becker, Caden.Kline, Elysia.Witham, Cole.DiLorenzo, Ali.Bobi}@]Il.mit.edu
dermendzhiev @gatech.edu wkr@ccs.neu.edu tleek@I1l.mit.edu

Abstract—Firmware rehosting allows firmware to be executed
and dynamically analyzed. Prior rehosting work has taken a
“one-size-fits-all” approach, where expert knowledge is baked
into a tool and then applied to all input firmware. Penguin
takes a new, target-centric approach, building a whole-system
rehosting environment tailored to the specific firmware being
analyzed. A rehosting environment is specified by a configura-
tion file that represents a series of transformations applied to
the emulation environment. The initial rehosting configuration
is derived automatically from analyzing the filesystem of an
extracted firmware image, providing target-specific values such as
directories, pseudofiles, and NVRAM keys. This approach allows
Penguin to rehost systems from a wide variety of vendors. In tests
on 13,649 embedded Linux firmware images from 69 different
vendors and 8 architectures, Penguin was able to build rehosting
environments that work for 75% more firmware than the prior
state of the art. We implement a configuration minimizer that
finds required transformations and show that most firmware
require only a small number of transformations, with variation
across vendors.

I. INTRODUCTION

Embedded systems are present throughout daily life. Their
prevalence has led to them being an important part of indi-
viduals’ security, handling sensitive information from banking
credentials to medical data. Being able to perform rigorous
security assessments of those devices is both a monumental
and critical task necessary to reduce the security risk those
systems pose to users. However, utilizing physical copies of
devices for security analysis can be costly, is not scalable,
and cannot provide sufficient detail for a deep assessment of
a device.

Dynamic analysis of a system’s software can reveal a host
of security issues, but vendors rarely provide access to an
appropriate emulator for this purpose. This means that, in
order to perform dynamic analysis, an analyst must first build a
bespoke emulator, a daunting task requiring expert knowledge

4 Corresponding author. Email: zje@mit.edu

Workshop on Binary Analysis Research (BAR) 2025
28 February 2025, San Diego, CA, USA

ISBN 979-8-9919276-4-2
https://dx.doi.org/10.14722/bar.2025.23xxx
www.ndss-symposium.org

at nearly every step, increasing both the time and cost of
analysis dramatically.

The costs of producing an emulation environment suitable
for analysis have resulted in a plethora of research into
the subject of fully or partially automating emulation. This
process, known as rehosting, can be simplified using tooling
that leverages similarities between embedded systems in order
to derive additional information about the requirements a given
firmware imposes on a virtual environment. Linux embedded
systems, in particular, have been the subject of much research
due to both being so prevalent and having multiple stable
interfaces to build against, but also due to their use of open
source components.

The process of rehosting can be viewed as a series of
transformations applied to a filesystem and runtime environ-
ment. The goal of rehosting then is to find the transformations
that produce a system suitable for dynamic analysis. In the
past, researchers would analyze a set of firmware, craft a
set of specific transformations that worked for those systems,
and then apply those transformations to other systems hoping
they would work. This approach is ineffective given the
diverse firmware landscape. E.g., an analyst may wish to
rehost firmware that is dissimilar to firmware they previously
rehosted (i.e., from a new vendor).

Rather than providing analysts with “one-size-fits-all” trans-
formations applied to all firmware, we see benefit in providing
granular controls that apply individualized changes to the
analysis environment. Additionally, it is difficult to under-
stand system behavior due to the quantity of information that
must be processed to find rehosting failures. Thus, feedback
throughout the rehosting process is crucial to help guide the
analyst.

We introduce Penguin, a new approach to rehosting embed-
ded Linux systems where rehosting transformations are made
explicit, are tailored to the firmware in hand, and can be easily
modified or shared by users. We pair this approach with a
suite of dynamic analysis plugins designed to aid in identifying
failures in a rehosting.

The design of Penguin is guided by the following goals:

1) Configuration not code: The transformations for a re-

hosting should be specified in a configuration that can be
understood and modified by both humans and machines,
removing the need for the user to customize kernel or

mailto:fasano@mit.edu
mailto:zje@mit.edu
mailto:luke.craig@mit.edu
mailto:Benjamin.Levy@ll.mit.edu
mailto:jmcleod@mit.edu
mailto:Jacques.Becker@ll.mit.edu
mailto:Caden.Kline@ll.mit.edu
mailto:Elysia.Witham@ll.mit.edu
mailto:Cole.DiLorenzo@ll.mit.edu
mailto:Ali.Bobi@ll.mit.edu

emulator code. The virtual environment should be fully
represented by the configuration to enable reproducible
and easily distributable rehostings.

2) Enable dynamic analysis: The platform should offer a
standard interface for developing and deploying dynamic
analyses to learn about the target’s behavior during
rehosting and subsequent analysis.

3) Unprivileged, scalable execution: The platform should
not require root access or privileged containers. This
is necessary to function in a wide variety of environ-
ments, including high-performance computing clusters
for large-scale experiments. Existing rehosting tools
require running in a privileged context for firmware
repackaging and networking.

4) Vendor-Agnostic Intervention Design: While the par-
ticular values and applications of rehosting transforma-
tions are often vendor-specific, their high-level concepts
are often universal. We strive to make our approach suf-
ficiently generic to work across vendors, deriving values
from analysis rather than hardcoding expert knowledge
when possible.

II. BACKGROUND AND RELATED WORK

A. Firmware Rehosting

A variety of approaches have been taken to provide so-
lutions to the rehosting problem, each offering different
tradeoffs. For example, many firmwares can be viewed as
standard Linux systems in which only userspace programs
are of interest to security analysts. Consequently, rehosting
is reduced to analyzing individual Linux binaries and ad-
dressing missing environmental dependencies, as demonstrated
by Greenhouse [1]. Other approaches seek to maintain the
ability to perform whole-system analysis without incurring
the burden of emulating arbitrary Linux kernels by swapping
the firmware-provided kernel for one provided by the virtual
environment, such as in Firmadyne [2] and its successor
FirmAE [3]. Other work, such as FirmSolo, attempts to make
kernel modules runnable by building a compatible kernel [4].
Whole-system analysis comes with a performance penalty,
however is necessary to enable the discovery of vulnerabilities
that only arise across multiple layers and interactions within
the system [5].

Generalized approaches to rehosting need some form of
interface to build around, however not all solutions choose
the interfaces provided by an Operating System (often Linux).
Others choose Memory-Mapped Input/Output (MMIO) or
similar means of interfacing at the hardware layer, such as
PRETENDER [6] and P?IM [7]. Modeling at this layer
allows a virtual environment to be operating system agnostic
in exchange for reduced ability to build an understanding of
introspected data.

When the goal of rehosting is dynamic analysis of a
system’s software stack we have found it more fruitful to
abstract away missing functionality with OS interactions rather
than building precise device models. Therefore, for Penguin

we have chosen an approach in line with Firmadyne/FirmAE:
whole-system emulation with kernel replacement.

B. Transferability of Rehosting Interventions

“One-size-fits-all” rehosting approaches apply a set of trans-
formations to all firmwares rehosted by the system, possibly
with some hard-coded decision making. These approaches can
be successful in generating broad results across a large corpus.
What if an analyst, however, is interested in a particular
device that is not well-represented by the devices the one-size-
fits-all system was designed for? Identifying and remediating
rehosting failures in one-size-fits-all systems can be extremely
time-consuming and expensive [8]. We investigate the trans-
ferability of rehosting interventions to answer the question: do
one-size-fits-all approaches solve the rehosting problem for all
vendors, or just the ones they are developed against?

Firmadyne [2] and its successor, FirmAE [3], both conduct
large-scale evaluations of thousands of router firmware images
to evaluate their approaches. Firmadyne examines firmware
from 42 vendors, but over 93% of their labeled successes
come from four vendors: D-Link, Netgear, TP-Link, and
TRENDnet. FirmAE is evaluated on routers and IP cameras
using firmware from these same four vendors alongside four
additional vendors: ASUS, Belkin, Linksys, and Zyxel.

While FirmAE successfully starts webservers in 79% of
their tests, we find the framework only succeeds in 33%
of tests on a more diverse dataset (Section V-A). If we
exclude the eight aforementioned vendors from the diverse
dataset, FirmAE’s success rate drops to just under 9%, whereas
Penguin succeeds on 52% (Section V). This implies FirmAE
primarily introduces vendor-specific interventions, rather than
generalized solutions to rehosting Linux firmwares. While the
tools and techniques needed to resolve rehosting failures can
be common across vendors, the actual specifics of how to
address failures are not, which is why we believe a target-
centric approach is necessary.

III. SYSTEM DESIGN

Penguin generates a configuration file that specifies the
details of a rehosting environment. The initial configuration
combines established defaults with information learned from
static analysis of the target filesystem. A configuration is then
realized into a rehosting environment and filesystem. This
rehosting is executed and dynamic analysis results are recorded
for the user. Through observation of the rehosting’s runtime
behavior, failures can be identified and the configuration file
can be refined to address those failures. Using this iterative
rehosting process, Penguin aims to be a framework for tai-
loring a rehosting to a specific firmware. To reproduce or
share a rehosting a user simply needs the configuration file and
original firmware image. The stages of the Penguin rehosting
framework are shown in Fig. 1.

A. Filesystem Analysis

We perform a series of static analyses to identify the
firmware’s filesystem and derive an initial rehosting configura-
tion. Once a filesystem is generated, it is necessary to identify

.. Comsole —
Key E\Iovel TOOD Forked Tool || Artifact | Inputs/Outputs Dependen(:y)
i s AN SOOI
.. VPNguin
LETE e @ridge network connectiong
wbloh . \
2
; B fs prep ;
[H .
§ H ;50 Apply static filesystem Q%%l%mFeS L41111L(1)x
g Extractor Fil penguin init :g modifications | 55
2 Extract filesystem i&esc}f'tim | Statically examine O
§o to tar archive TV filesystem . e plneins Y
5 2 Dynamic analyses for runtime — PANDA.re
% monitoring and modification)
&
Binwalk < A l
g :
2))
% FetchWeb Dynamic analysis
3 results
=

Fig. 1: Rehosting a firmware

the original system’s architecture, bit-width, and endianness to
select appropriate parameters for CPU emulation. Additionally,
the init program is identified.

Penguin extends the static analyses from both Firmadyne
and FirmAE as well as supports several new analyses. While
some analyses from Firmadyne and FirmAE are tailored to
specific vendors (or even firmware), our novel analyses are
designed to be firmware agnostic. The (configurable) suite of
filesystem analyses in Penguin are summarized in Table I and
given more detailed treatment in Appendix C.

B. Rehosting as a Configuration

After the filesystem analyses are complete, the Penguin user
has an initial rehosting configuration. A Penguin rehosting is
a YAML file that is paired with a repackaged filesystem to
precisely specify that rehosting. The configuration capabilities
can be broadly categorized into three groups: static filesystem
modifications, runtime environment, and dynamic analyses. A
brief example of a configuration is in Appendix B

1) Static Filesystem Modifications: Users can define a set
of modifications to make to the filesystem before the rehosting
starts. Files can be added, deleted, or moved.

2) Runtime Environment: The configuration specifies the
emulated environment that the rehosting will execute under.
This includes emulator configuration (e.g., which CPU archi-
tecture), Linux boot arguments, network device names, and
initial NVRAM values. Additionally, the configuration can
specify new pseudofiles in /proc, /dev, and /sys as well as
models for how those pseudofiles should behave.

3) Dynamic Analyses: While a rehosting runs it can be
analyzed to identify failures and inform future refinement
to the rehosting configuration. Beyond the rehosting process,
dynamic analyses of a rehosted system can also be leveraged
to reverse engineer system behavior, identify vulnerabilities,
or otherwise exercise the functionality of a system.

with Penguin.

IV. IMPLEMENTATION

Penguin’s implementation enables configuration-based re-
hosting, dynamic analysis of target systems, and collection
of health metrics. Throughout the entire Penguin process,
no special permissions are required and as such we ran
the experiments in Section V as an unprivileged user on a
computing cluster.

Penguin can rehost Linux-based systems across a variety
of architectures (x86, ARM and MIPS), ABIs (e.g., hard and
soft float on ARM), bit-widths (32-bit and 64-bit), and byte
orders (big and little endian). The implementation could be
extended to support other architectures, though many aspects
of our approach depend either directly or indirectly on the
stable nature of the Linux syscall ABL

A. Extractor

The rehosting process begins with a binary blob of data
representing the system’s software. This blob may be drawn
from a variety of sources ranging from vendor-provided files
(which may be partial updates or entire firmware images) to
memory dumps from physical devices. First, a filesystem is
extracted from this image, repacked into a usable format, and
modified if necessary. Accurate extraction is vital as missing
files, incorrect permissions/owners, and broken symlinks may
cause execution failure or crashing of critical services.

Binwalk and unblob are two open-source filesystem extrac-
tors that recursively scan binary blobs for filesystems and
extract their contents. Binwalk [9] has been widely used in
the literature for both static [10] and dynamic analysis [2], [3],
[11], [1] of firmware images, but its development stalled since
2021, only later to be rewritten. The rewrite (Binwalk v3),
while a positive development, was yet to meet feature parity
at the time of writing while many of the previous version’s
extractors suffer from known flaws. Recently, unblob [12]
was released as an alternative filesystem extractor designed to
improve upon the capabilities of Binwalk. In limited testing,

Analysis Name Description Based on Produces
Architecture Identify the target architecture. Firmadyne Single value
Init Identify potential init binaries. Firmadyne List of values
NVRAM Identify default NVRAM values. FirmAE List of values
ForceWww Identify command(s) to force start web server(s) FirmAE List of values
Missing Files/Directories | Create expected directories and files Novel / FirmAE List of values
Shims Replace select userspace applications with alternatives. Novel / Firmadyne | List of values
Pseudofiles Identify references to pseudofiles in /dev, /sys, and /proc/. Novel List of values
ABI Identify the target application binary interface (e.g., armhf). | Novel Single value
Library Functions Identify all functions exported by libraries. Novel List of values
Network Interfaces Identify possible network interface names. Novel / Firmadyne | List of values

TABLE I: Static Filesystem Analyses Performed by Penguin.

we found unblob to outperform Binwalk 2.x in terms of both
speed and accuracy, often by a wide margin. However, unblob
does not support every filesystem format that Binwalk does,
and neither tool is designed to preserve filesystem permissions
or symlinks.

To work around symlink and permission issues, prior work
has taken heavy-handed approaches to fix permissions (e.g.,
recursively adding execute permissions) [3]. While modifying
permissions in that way can be effective, it may also introduce
subtle inconsistencies that affect the rehosting process or lead
to incorrect analysis results down the line (e.g., false positives
on bugs). Even when the filesystem is extracted correctly, the
permissions of the user running the extraction tool can affect
the permissions of the extracted files.

In order to resolve such issues our extractor runs Binwalk
and unblob under fakeroot to ensure that permissions are
preserved. Within the fakeroot environment, we analyze the
extracted filesystems to identify the largest filesystem that
appears to be Linux-based [2]. We further check for executable
files, a requirement for runnable Linux filesystems. Finally, if
both extraction tools produce a filesystem, we take the output
from unblob. If no filesystem is found, we report a failure.
While still operating under fakeroot we repackage the resulting
filesystem into an archive to preserve the permissions between
extraction and the subsequent static analysis step.

B. Static Analysis and Configuration Generation

1) Initialization: Penguin analyzes the repackaged filesys-
tem to generate an initial configuration. First, the architecture
of the filesystem is identified by examining the architecture of
binaries within standard binary directories. If the architecture
cannot be identified or if the architecture is not supported, the
process halts. Next, a configuration skeleton is generated that
specifies the architecture, the OS kernel, and a set of fixed
filesystem modifications to add the Penguin in-guest utilities
(Section IV-D) to the guest filesystem. A set of default plugins
is then added to the configuration.

After those initial steps, the static analysis begins in earnest.
The filesystem archive is examined to identify if a set of
standard directories are present. Any missing directories are
added to the configuration. This stage of the analysis largely
implements the filesystem preparation strategy of Chen et
al. [2] and Kim et al. [3], but the modifications are written
into the user-facing configuration file instead of directly into
the filesystem.

Next the guest filesystem is searched for a set of 8 shim
targets: standard programs that Penguin supports alternative
implementations for. These alternatives provide instrumenta-
tion, optimize performance, or disable unwanted behavior.

After shimming, the guest filesystem is searched to identify
potential init binaries and scripts. This search identifies exe-
cutable files with names containing the string init or start.
While this search is not exhaustive, it is more versatile than
prior approaches of simply checking for a hardcoded list of
paths [2].

A static analysis then examines each shared object within
the guest filesystem using pyelftools [13] to identify exported
symbols and identify default NVRAM values exported by
libraries. The guest filesystem is also searched for default
NVRAM values by identifying NVRAM configuration files.
If multiple sources of default NVRAM values are identified,
libraries take precedent over the filesystem.

Finally, the static analysis implements FirmAE’s [3] tech-
nique of statically identifying webservers within the guest
filesystem so they can be directly executed. The configuration
is extended to create a new script with commands to launch
each such service if the ForceWWW feature is enabled by the
user.

2) File System Preparation: A Penguin configuration file
may specify static modifications to the filesystem. The mod-
ifications may include adding, removing, or moving files,
directories, and symlinks. New scripts or text files may have
their contents specified inline in the configuration, or binaries
may be copied in from a host file at a specified path. The orig-
inal filesystem tar is left unmodified throughout the rehosting
process, and a QCOW image is generated from the tar using
genext2fs! and gemu-img.

C. Penguin Runtime

Given a configuration and an archive of a filesystem to
rehost, Penguin will then realize the configuration into re-
hosting artifacts. This begins by transforming the filesystem
as described above. By default, a suite of pre-built Penguin
utilities of the appropriate architecture are copied into the guest
to enable shell access (console), dynamically intercept library
function calls (libinject), instrument shell scripts (busybox),
and enable network communication (VPNguin). After the
configuration is applied to the filesystem, a virtual disk image

Thttps://github.com/bestouff/genext2fs

https://github.com/bestouff/genext2fs

specific to that configuration is produced (images are cached
per configuration).

After the filesystem is generated, the runtime environment
is loaded. The PANDA.re [14] dynamic analysis platform is
used for emulation with rehosting enhancements as PyYPANDA
python plugins [15]. Dynamic analysis plugins are loaded and
provided with the configuration. Those plugins are tasked with
monitoring the behavior of the guest as it runs and enforcing
the configuration. They may coordinate with in-guest logic
to dynamically collect the desired information and enforce
the desired modifications. For example, the pseudofiles plugin
coordinates with the guest kernel to track accesses to files
in /dev, /proc, and /sys, identify accesses to missing
devices, and to model the behavior of devices specified in
the configuration. Other plugins offer network vulnerability
scanning (Nmap [16]) and web server interaction.

D. Guest Coordination and In-Guest Utilities

During execution, Penguin user space utilities and the
kernel directly provide information to Penguin plugins through
hypercalls [17]. Though we are executing with PANDA which
offers virtual machine introspection (VMI) features, hypercalls
provide a reliable mechanism for plugins to passively track and
actively modify guest behavior. As our approach to rehosting
already requires a custom kernel and additional user space ap-
plications, directly modifying those components to provide the
desired information is more straightforward than VMI. In more
adverserial usecases (e.g., malware analysis) this reduction
in fidelity can be unacceptable. Modified files and additional
directories are observable effects, even if they are unlikely to
impede the operation of a properly-behaving device. We find
this tradeoff to be favorable in the vast majority of cases.

1) Instrumented Kernel: Our instrumented kernel extends
Linux 4.10 with a custom driver for dynamic pseudofiles
and a set of modifications to collect and report internal
state to the Penguin runtime plugins. Our Pseudofiles driver
supports creating pseudofiles in /dev, /proc, and /sys at
runtime, using hypercalls. Beyond creating files, the driver also
forwards request for reads, writes, and ioctl system calls to the
Penguin Pseudofiles plugin so that system call responses can
be dynamically crafted. Our kernel also extends the standard
Linux memory management logic to report the details of every
memory virtual memory area including the name of a backing
file and the base address of the area (for measuring coverage).

2) Network Communication: Embedded systems often have
hard-coded expectations for network interfaces that are config-
ured during their boot process. For example, a router may as-
sign a static IP address to one interface (i.e., et h0 for a LAN)
and then configure a DHCP server on another interface (i.e.,
ethl for a WAN). Traditional approaches to rehosting [2], [3]
have attempted to learn network configurations and reconfigure
the emulator and host network stack to allow communication
with the rehosted firmware. This approach requires careful
analysis of individual firmwares and precise configuration of
the host network stack, which requires root privileges and
is error-prone. Furthermore, once the network is configured,

services of interest may be unreachable due to firewall rules
affecting the communication interfaces.

Firmadyne [2] fails to learn the networking configuration
of nearly 70% of the firmware images evaluated, prohibiting
subsequent analysis. FirmAE [3] identifies a suite of “network
arbitrations” to reduce this failure rate including reconfiguring
guest firewall rules to allow for analyst connections.

We take a new approach to this problem by configuring
the guest with a suite of “dummy” interfaces® specified in
the rehosting configuration. These dummy interfaces appear
to the guest as real network interfaces, but they are not
connected to any emulated hardware; they are effectively
loopback interfaces. While this approach enables the guest
to reconfigure and bind to interfaces, it does not solve the
problem of establishing communication with services listening
in the emulated guest.

Traditional Network Configuration VPNguin Network Configuration

Host machine Host machine

Emulator

Guest Guest

Target VPNguin
process [guest] pi
I f

Target
rocess
Guest OS 1

Virtual NIC Virtual NIC
A
Analysis > Analysis
_> Host 08

Fig. 2: VPNguin architecture versus traditional rehosting net-
work communication.

We address this problem with VPNguin, a novel utility that
runs in both the guest and host to bridge network traffic
between the two, bypassing the need for emulated network
hardware. The two sides of VPNguin communicate over the
VirtlO Vsock protocol, a communication channel that bypasses
the traditional emulated network stack, and a member of the
AF_VSOCK family [18], [19]. This approach ensures that the
two sides of VPNguin can communicate, regardless of the
guest and host network configuration. No special privileges are
required by this approach so long as the kernel is compatibile.
The architecture of VPNguin is shown next to a traditional
rehosting network configuration in Fig. 2.

When paired with the guest’s dummy network interfaces,
VPNguin enables host-based analyses such as network vulner-
ability scanners to communicate with guest services listening
on any guest interface. Penguin offers an Nmap plugin to
automate analysis of network-listening guest services.

When the host instance is configured (guest IP address, port,
and network protocol), it binds a host socket and launches
a thread to bridge traffic for that service. Whenever traffic

Zhttps://tldp.org/LDP/nag/node72.html

https://tldp.org/LDP/nag/node72.html

is received on that socket, VPNguin forwards the traffic and
destination metadata to the guest instance over an AF_VSOCK
socket. The guest instance sends the traffic to the target service
through guest’s local network and forwards the response back
to the host instance. The host instance sends the guest’s
response back to the original client that initiated the request.

When guest services bind to multiple IP addresses or ports,
VPNguin can be configured to bridge traffic for each. For
example, if a firmware configures eth0 with IP address
192.168.1.1 and ethl with 10.0.0.1 and then spawns a net-
work service that listens on both interfaces, VPNguin allows
a user to connect to the service on either IP address from
the host. This is particularly valuable when services listen on
select interfaces or expose different functionality depending
on the IP address used (e.g., WAN vs. LAN interfaces).

Unlike the TAP/TUN networking often used in prior
work [2], [3], VPNguin does not require elevated host privi-
leges. If the host kernel does not support AF_VSOCK or the
user does not have permissions to write to /dev/vsock, a
userspace daemon is used.’

3) LibInject: Liblnject is a shared library that is injected
into the init process via LD_PRELOAD. The library is signif-
icantly based on the LibNVRAM library from Firmadyne [2]
and extended by FirmAE [3], but we have rewritten it to
work with arbitrary library functions, improve performance
and allow for runtime tracking of behavior with hypercalls.
Liblnject is driven by the Penguin configuration and a user
can custom define function responses and even C functions
from the Penguin configuration file.

4) Console: Penguin can provide an interactive root shell
for the user to interact with the guest. We extend Firma-
dyne’s [2] console to support interactive job control (i.e., ctrl
+ cand ctrl + z). This console is configured so that the
user’s PATH prioritizes Penguin’s BusyBox utilties over the
firmware’s.

5) BusyBox: We place a custom BusyBox [20] binary into
guest filesystems for two purposes. The first is to ensure a
standard suite of commands will be available to a user of
the Penguin. The second is to customize the BusyBox shell
(ash) to perform various dynamic analyses to be reported via
hypercalls.

By default, Penguin configurations replace existing
/bin/sh binaries with a symlink to our instrumented Busy-
Box. Our BusyBox instrumentation provides script-level code
coverage as well as information about the comparisons made
during script execution. Comparisons tracked include expected
file properties and environment variable values. This function-
ality is made possible by the lazy expansion of variables.
Rather than eagerly expand environment variables utilized
in strings and command arguments, BusyBox’s ash shell
embeds the names of variables to be expanded via escape
sequences in strings. Those escape sequences are parsed in
order to understand which environment variable(s) affect a

3https://github.com/rust-vmm/vhost-device/

given conditional and an analyst can see what value is needed
to change control flow.

E. Penguin Runtime Plugins

Penguin’s suite of runtime plugins are designed to monitor
and manage the guest environment during emulation. These
plugins enforce runtime modifications necessary to ensure
the environment acts as specified in the configuration and to
collect data for subsequent analysis. These are implemented as
PANDA plugins in both Python and C++. A brief description
of each plugin is provided below.

The Core plugin analyzes the output of the guest system
console to identify if a kernel panic has occurred. If a panic
is detected, the plugin reports the failure and terminates the
rehosting. The plugin also enforces a timeout if one is specified
in the configuration file. The plugin manages the processing
and dispatching of guest hypercalls to the appropriate plugins.

The Env plugin analyzes how guest processes interact with
environment variables. The plugin coordinates with library
hooks in Liblnject, to track whenever environment variables
are accessed through the getenv function or whenever the
contents of /proc/cmdline (which contains the boot argu-
ments and can specify environment variables) are compared
to another string.

The Interfaces plugin tracks the network interfaces a guest
attempts to interact with. If a network interface is missing, the
plugin proposes adding the missing interface to the rehosting
configuration.

The Mount plugin tracks failed mount attempts within the
guest. Filesystem mounts may fail due to missing storage
devices or a lack of kernel support for mounting in-guest
filesystems. The plugin optionally makes all mount attempts
return as if they had succeeded.

The Nvram plugin coordinates with the in-guest LibInject
to track how values are loaded, stored, and cleared from the
guest’s NVRAM.

The Pseudofiles plugin coordinates with the modified kernel
to track accesses to missing pseudofiles in /dev, /proc, and
/sys and to model those files as specified in the configuration.
If a guest process attempts to access a missing pseudofile, this
failure is recorded.

The NetBinds plugin analyzes the syscalls issued by the
guest to identify whenever a network bind occurs. When such
an event is detected, it informs other plugins of the event.

The VPN plugin manages the execution and dynamic con-
figuration of the host VPNguin instance. This plugin consumes
events from the NetBinds plugin. The VPN plugin can inform
other plugins of the newly-available service (e.g., the Fetch-
Web plugins can be notified that an http server is ready for
communication).

The FetchWeb plugin can query a webserver using wget
whenever a TCP bind to port 80 or 443 occurs. The response
can be logged for analysis.

The FICD plugin implements the Firmware Initialization
Completion Detection metric from Pandawan [11], which uses

https://github.com/rust-vmm/vhost-device/

edit distance of newly spawned processes to determine when
system intialization has finished.

In addition to the plugins described above, we have written
plugins for collecting coverage (including lines of shell script),
health metrics (e.g., number of processes executed), blocking
signals, and running nmap. Those plugins are not a part of
our evaluation so descriptions have been removed for space
considerations.

While trying to build a high-quality rehosting configuration,
it may be advantageous to evaluate known-incorrect configu-
rations that are designed to reveal unknown information about
the guest. These configurations are learning analyses.

One example of a learning analysis is Dynamic String
Search, designed to recover potential values for strings. When
a key (e.g., an environment variable) is identified as potentially
interesting, but its value is unknown, this analysis can be used
to learn potential values for that key. The user sets that key to
a “magic” value. At runtime, dynamic string search analyzes
every guest function call and checks if the arguments contain
an address pointing to that magic value. If a match is found
and the other argument also contains an address pointing to
a sequence of null-terminated ascii characters, the function is
assumed to be some form of string comparison and that other
argument is recorded as a possible value for the key.

F. Configuration Minimization

Penguin’s analyses produce a large number of possible
configuration options* and we anticipate most of those are
not actually used in a rehosting. Some configuration options
might be superfluous and/or unrelated to the components of
interest for security analysis. An analyst might be curious,
then, about which configuration options are actually necessary
for a system once it has been rehosted.

With firmware executions taking on the order of minutes, it
becomes intractable to minimize a large configuration space
down to each individual option. For computational efficiency
and for user readability, we separate our configurations into
individual patches. A configuration file can then hierarchically
include a number of patches. For example, each analysis in Ta-
ble I produces a configuration patch as its output. Anecdotally,
we have found grouping rehosting transformations into patches
useful for separating out manual changes to the configuration.

We minimize configurations by running the firmware with
all options in that configuration enabled except for a given
patch. We consider a patch essential if the firmware no longer
rehosts without that configuration patch. The user of the
configuration minimizer specifies what the criteria is for a
successful rehosting (e.g., a non-empty HTTP response, a
certain process executes, etc...). We test all patches in a given
configuration this way and our minimizer ensures that patches
are orthogonal by splitting overlapping options into distinct
patches if necessary. Note that as a performance optimization,

4We observed a mean of 1,344 configuration options per firmware in our
experiments. An individual option could be for example, a single NVRAM
key.

this minimizer does assume orthogonality of features, which
we do not provide formal guarantees around.

During our experiments, we observed false positives (non-
essential features that were labelled as required) due to non-
determinism in system execution when sometimes services
would fail to start. Based on our observations, we hypothesize
that this non-determinism comes from a variety of sources:

o Process scheduling Startup often launches a number of
processes that all want to do work and then the scheduler
non deterministically decides which gets to run

o Timeouts System runtime is variable and the timeout
during an experiment may be close to that timeout.

e Memory Accesses Garbage data is sometimes valid
pointers but sometimes is not. Invalid pointers will cause
processes to crash.

We increase confidence in our minimization results by at-
tempting to run a firmware multiple times before marking a
patch as essential. If a firmware fails to rehost without a given
configuration patch ten times in a row we mark that patch as
essential. We explore this non-determinism in more detail in
Section V-D. A more formal treatment and investigation into
causes of non-determinism in rehosted systems is an interest
of future work.

V. EXPERIMENTS
A. Large-Scale Evaluation

The target-centric rehosting approach is intended to help
users analyze a given firmware and provide a platform for
those users to assess and improve the quality of their rehosting.
Though our system is intended for that target-centric approach,
we perform experiments to ensure we are at least matching
parity with existing large-scale rehosting systems. Further-
more, we wish to evaluate Penguin’s performance across a
diverse set of firmware vendors.

The first experiment examines how Penguin’s automatically-
generated configuration performs on a large corpus, partic-
ularly to measure the efficacy of extraction and filesystem
analysis. This initial analysis and configuration generation
is akin to the one-shot analysis of FirmAE, so we utilize
FirmAE as a baseline for evaluation and seek to demonstrate
the differences in our approach to improve rehosting success
across a variety of vendors.

Our large-scale evaluation was performed on a corpus
of 13,649 firmware images. The corpus is summarized in
Appendix A. Since prior work had used smaller corpa of Linux
firmware (1,124 images for FirmAE and 9,379 for firmadyne),
we ran FirmAE against our corpus for comparison. Due its un-
privileged nature, Penguin was run on an HPC cluster using
Singularity [21], [22]. Since FirmAE requires privileges and
cannot be used in an HPC environment, the FirmAE results
were ran on a single machine over the course of about a month.

A rehosting is considered successful if the emulated system
has a process bind to port 80 or 443 (we will discuss this
criteria futher in Section V-C). Fig. 3 shows the results of

26.1% 36.2% 3171% 6760

3561 4939 4249 900

EEm Both Start WWW B Neither Starts WWW @ Only Penguin Only FirmAE

Fig. 3: Large Scale Comparison of Penguin and FirmAE on
13,649 firmware images. WWW server start detected with a
bind to port 80 or 443.

our large-scale comparison between FirmAE and Penguin and
Fig. 4 shows rehosting success broken down by vendor. From
the results, we see that roughly half the firmwares do not start
a webserver with Penguin. These failureThese failures can be
attributed to various reasons, ranging from failure to extract a
filesystem from the provided image to the firmware does not
attempt to start a webserver.

Both FirmAE and Penguin have situations where a web-
server does not start, some of which can be attributed to
non-determinism. We note that Penguin starts 75% more
webservers than FirmAE and the fraction of firmwares that
start only with Penguin is roughly 4.7x that of firmwares
that start only with FirmAE. The table below summarizes the
classes of failures for a webserver not starting (percentages
are as fraction of failures, not of firmware corpus):

TABLE II: Summary of Failures for Penguin/FirmAE

Class of Failure FirmAE Penguin

Extraction Failure 3342 (36.37%) 2045 (35.02%)
Unsupported Architecture 126 (1.37%) 84 (1.44%)
No Webserver Start 5720 (62.26%) 3710 (63.54%)

Looking at Table II, we see that Penguin’s improvements
are across all categories of rehosting failure.

B. Non-empty Web Server Response

For this subsection, we consider the 7710 firmwares that
bind a webserver with Penguin. Prior work has considered a
firmware binding a webserver as a success [2], [3]. While a
bind to port 80/443 can be an indication of rehosting health, a
service bind alone does not indicate the underlying service is
functional. Using the FetchWeb plugin discussed earlier, we
check to see if a service returns a non-empty reply by running
wget. We run the firmware for 600s with support for early
termination if we receive a non-empty webserver response
or the firmware has completed initialization (using the FICD
metric from Pandawan [11]). This simple HTTP interaction is
an improved metric over checking for webserver start, but it is
far from exhaustive. Further work is needed to explore more
exhaustive and useful interactions with a rehosted guest.

Of the 7710 webservers that bind to port 80/443, 5805
(75%) give a non-empty response. That means that 25% of
firmwares that bind to port 80/443 likely have a nonfunctional
webserver.

[]FirmAE
D Penguin

engenius
& netgear

zyxel \

ubiquiti
asus

netis

dovado

linksys

mellanox
tplink
100% peplink
trendnet

dlink belkin

Fig. 4: Rehosting success per vendor for the 15 most prevalent
vendors in our dataset. We see that Penguin outperforms Fir-
mAE across most vendors and supports a wider set of vendors,
despite not having been designed with expert knowledge for
those vendors.

C. Evaluation of Filesystem Analyses

In order to characterize the importance of various analyses
to rehosting, we minimized the configurations generated by
Penguin using the method described in Section IV-F. We used
a non-empty webserver response as our criterion for rehosting
success.

The results of configuration minimization are categorized by
filesystem analysis in Table III. The minimizer was able to run
5213 of the 5805 firmwares. We observe that 3697 (70.92%) of
those firmwares did not require any additional analyses beyond
what is essential to run firmware in Penguin. Of the optional
analysis features we see that Library Functions is the
most impactful. The Library Functions analysis pro-
vides vendor-specific names for functions like nvram_init.
We observe that providing correct nvram keys is required for
only ~3.7% of the firmwares to give a healthy webserver
response, but having correct initialization is required for 16%
of firmwares. We note that once one starts to interact with
a system more thoroughly, what is important for a rehosting
changes (i.e., higher fidelity can be necessary).

Looking at the vendor-specific breakdowns of each analysis
type, we see significant variation in the analyses required.
While some vendors require little to no additional analyses
(Gargoyle, TPlink), ASUS firmwares rely heavily on library
functions (due to custom naming of nvram_ functions as
noted in prior work [3]), 91.80% of Netis firmwares require
shims that prevent halt, and 21.4% of Netgear devices re-
quire NVRAM keys. Furthermore, within vendors like Netgear
and Belkin, there is notable diversity. This variation across
vendors supports the case for deriving intervention information

TABLE III: Filesystem analyses required by the firmwares that give a non-empty webserver response along with vendor-specific
distribution. Firmware may require more than one analysis feature. Analyses are described in Table I and Appendix C.

Top Vendors

Analysis Overall | \SUS Netgear TPlink Ubiquiti Linksys Dlink Trendnet Netis Belkin
Sample Size | 5213 | 2100 861 431 200 115 111 61 61 23
ForceWn 18.0% | 30.0% 3.0% 67% 100.0% 2.6% 0.9% 00% 00% 21.7%
Library Functions 157% | 227% 314% 0.0% 0.0% 9.6% 12.6% 219% 49% 652%
NVRAM 37% | 02% 214% 0.0% 0.0% 09% 0.0% 00% 00% 21.7%
Shims 17% | 0.1% 17% 0.0% 0.0% 0.0% 0.0% 9.8% 91.8% 0.0%
Pseudofiles 03% | 0.1% 05% 0.5% 0.0% 0.0% 0.0% 00% 00% 0.0%
Network Interfaces | 0.% | 0.0% 00% 0.0% 0.0% 00% 0.0% 00% 00% 21.7%
Missing Files/Dirs | 0.0% | 0.1% 00% 0.0% 0.0% 00% 0.0% 00% 00% 0.0%

from analyses as opposed to hardcoding expert knowledge.

We remind the reader that our simple webserver interaction
is not representative of all functionality a security analyst
would require from a rehosted system. Once one starts in-
teracting more extensively with a system, features like correct
NVRAM keys can become critical. We cover a case study of
a system with a non-empty, but poorly performing webserver
in Section VI-A.

Since we observe in Table III that many firmwares do
not use analyses beyond our default extraction, we were
curious to see the impact of minimization on configuration
size. In Fig. 5, we calculate the compression ratio of the
minimized configuration to the default configuration generated
from running all analyses. To keep experiments tractable,
configuration optimization occurs at the configuration patch
granularity, so quantization effects are present. Still, this
minimization demonstrates that users can focus on the salient

transformations to get their rehostings to function vs. a one-
size-fits-all approach.
Config Compression Ratio
40.0% mmm winaus NVRAM keys B
35.0% L
30.0% L
25.0% L
20.0% L
15.0%
10.0%
5.0% F
0
oo 10’ 10° 10° 10"

Compression Ratio (bytes C/bytes C')

Fig. 5: Compression ratio of default configuration to min-
imized configuration (for webserver non-empty response).
Since NVRAM analysis generates a large number of potential
keys, we consider the compression ratio both with and without
NVRAM keys.

D. Non-determinism

As noted in Section IV-F, we observed non-determinism
in healthy webserver respones and ran each configuration up
to ten times. In addition to observing ten successive failures
before marking a system as failed we recorded the number of
attempts before a given firmware succeeded. We average the
number of attempts per firmware and show the distribution in
Fig. 6.

Distribution of Attempts Before First Success

80%

60%

40%

20%

I

1 2 3 4 5 6 7 8 9
Attempts (mean per firmware)

0%

Fig. 6: Histogram showing average number of attempts before
a run succeeded with a required filesystem analysis. Each data
point is the mean of features per firmware image. L.E., the “2”
bin represents the firmwares with an average of 2 attempts per
required feature.

From Fig. 6, we see that most runs succeed in one attempt.
However, roughly 15% of firmwares require 2+ attempts
on average. Fortunately, the tail falls off quickly so future
experiments can focus on a smaller number of re-executions.

VI. CASE STUDIES

Below, we discuss case studies of systems that we have
rehosted with Penguin. In each example, some target-specific
information is needed to successfully rehost the system and
Penguin not only makes those transformations simple to apply
but also is used to identify which transformations are required.

A. StrideLinx Industrial VPN

The StrideLinx Industrial VPN is a commercial remote
access VPN solution. It is an ARM-based Linux 3.4.96 sys-
tem with support for Distributed Switch Architecture (DSA)
hardware, a temperature sensor, real-time clock, and serial
communication. The firmware is designed to employ services
for snmpd and a web management interface among other
services.

Penguin is able to identify the architecture and endianness
of the system as well as the init program. Its static analysis is
able to identify network interfaces and psueodofiles criticial to
successful firmware operation. In particular, the /dev/dsa
device, which manages the Distributed Switch Architecture
hardware must exist and return non-erroring ioctls. On its
initial run of the system, Penguin is able to run the standard set
of services including the web management server (this would
satisfy a non-empty response in Section V). However, when
opened in a browser it is clear that the web server is not
running correctly as it gives errors indicating that the sxid
(which identifies the specific router variant) is incorrect.® This
value as well as the sxserno (serial number) are arguments
expected to be provided to the kernel on the command line
from the bootloader. Penguin is able to detect through the
dynamic string search described in Section IV-E that the
environment variables are referenced and missing. We identify
candidate values using the string search results. On the next
run of the system, we are able to provide correct values for
these environment variables and the web interface is usable.
An example of the Penguin configuration options used for this
system is in Appendix B.

B. TRENDnet TV-IP201

The TRENDnet TV-IP201 is a wireless network camera
server with audio capabilities. It is a MIPS-based Linux 2.4.18
system with RALink WiFi and a USB Camera. The firmware
is designed to employ services for web management, upnp,
and portmap.

Penguin is able to identify the architecture and endianness
of the system as well as the init program. Penguin’s suite
of static analyses identify several correct network interfaces
and 19 pseudofiles including those representing the serial and
video interfaces. On the initial run of the system, Penguin is
able to run several services including upnp and portmap, but
not the web server. The web server fails because the system is
missing the adm0 network interface. Normally, this interface
would be initialized by the kernel module associated with
the RALink WiFi device. When looking at Penguin’s runtime
analysis output, the command /sbin/iff_get -i adm0
was one of 13 commands executed during startup (and the
second-to-last). An analyst can use this information to add the
admO interface and rehost the system.

SA metric such as a non-empty webserver response would mark this
rehosting as healthy, despite its unusable interface. This example highlights
the need for more thorough interactions to assess rehosting quality.

C. D-Link DNS320 NAS

The D-Link DNS320 NAS is a consumer-grade Network
Storage device. It is an ARM-based Linux 2.6.31 system with
hardware support for WiFi and multiple Hard Drives. The
firmware is designed to employ services for web management
and smb among other services. The system is EOL and
has widely reported vulnerabilities. In particular, CVE-2024-
3273 and CVE-2024-3272 impact the web server and received
media attention.

After identifying the architecture, endianness and init pro-
gram Penguin runs static analyses to identify network in-
terfaces critical to its proper functioning as well as several
pseudofiles required for the system to operate. With its initial
configuration, Penguin is able to run the standard set of
services including the web server. However, as additional
services are enabled, the system begins to fail. The system fails
because it begins to interrogate emulated hardware for hard
drives. While we could have added support for the underlying
hard drives through complex pseudofile modeling we chose
instead to disable the firmware’s ability to disrupt the system
by replacing the shutdown and killall scripts with a
shim script that exits without error. With these changes in place
we are able to interrogate the web server and other services.
This allows us to examine and better understand the target
CVEs.

VII. LIMITATIONS AND FUTURE WORK

Currently, our system requires a human-in-the-loop for
rehosting. The next step in improving this work would be
automation around the configuration generation process. Since
our system has dynamic analysis and measurement capa-
bilities, we could propose transformations based on failures
and use health metrics to guide the creation of rehosting
configurations.

Filesystem extraction plays a large role in the rehosting
process. We believe that focusing on a filesystem extractor
will be a useful way to improve rehosting success, especially
if we can pair that extractor with filesystem analyses. One
such opportunity is to extend our mount analysis and integrate
it with secondary (i.e., non-root) filesystems identified by our
extractor. After observing a firmware attempt to mount a sec-
ondary filesystem to a given mount point, and potentially failed
accesses within the mount point, new configurations could
be generated to specify that various secondary filesystems be
placed at the mount point.

Finally, we would like to integrate Penguin with Green-
house [1], a single-service rehosting platform. Greenhouse
iteratively refines the environment run by a single-service
from an embedded system, optionally using a whole-system
rehosting from FirmAE as a source of information. As Penguin
outperforms FirmAE and allows a system to customize the
rehosting environment, we believe integrating Penguin with
Greenhouse could improve Greenhouse’s ability to rehost
single-services from firmware.

VIII. CONCLUSIONS

We present Penguin, a target-centric rehosting platform
for embedded Linux firmware. Penguin considers a firmware
rehosting as a repackaged filesystem with a configuration that
specifies transformations to be applied to that filesystem and
the runtime environment. This rehosting model of “configura-
tion not code” allows users to iteratively improve, share, and
reproduce their rehostings. As a design goal, Penguin runs
in unprivileged environments such as HPC clusters. A variety
of static and dynamic analyses can be performed to assess
rehosting health, study the guest system, and streamline its
operation. In particular, we introduced the novel VPNguin util-
ity, which provides and automates robust network connections
to services listening inside the rehosted system. In a large-
scale evaluation, Penguin outperforms prior work on a diverse
corpus of 13,650 Linux firmware images, with improvements
across all vendors.

AVAILABILITY

Penguin code is available at https://github.com/rehosting/
penguin

ACKNOWLEDGMENTS

DISTRIBUTION STATEMENT A. Approved for public
release. Distribution is unlimited. This material is based upon
work supported by the Dept of the Army under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the Dept of the Army. Delivered to the U.S. Government
with Unlimited Rights, as defined in DFARS Part 252.227-
7013 or 7014 (Feb 2014). Notwithstanding any copyright
notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed
above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist
in this work.

The authors acknowledge the MIT Lincoln Laboratory
Supercomputing Center for providing HPC and database re-
sources that have contributed to the research results reported
within this paper/report.

REFERENCES

[11 H.J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith e al., “Greenhouse:{Single-
Service} rehosting of {Linux-Based} firmware binaries in {User-Space}
emulation,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 5791-5808.

[2] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for Linux-based embedded firmware,” in NDSS, 2016.

[3] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in ACSAC. ACM, 2020.

[4] 1. Angelakopoulos, G. Stringhini, and M. Egele, “{FirmSolo}: Enabling
dynamic analysis of binary linux-based {IoT} kernel modules,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 5021—
5038.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-Gavitt,
M. Egele, A. Francillon, L. Lu, N. Gregory et al., “Sok: Enabling
security analyses of embedded systems via rehosting,” in Proceedings
of the 2021 ACM Asia Conference on Computer and Communications
Security, 2021, pp. 687-701.

E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratan-
tonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel et al.,
“Toward the analysis of embedded firmware through automated re-
hosting,” in RAID, 2019.

B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” in
USENIX Security, 2020.

C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements,
“Challenges in firmware re-hosting, emulation, and analysis,” ACM
CSUR, 2021.

C. Heffner, “Binwalk: Firmware analysis tool,” Open Source Software,
2013, a tool for searching a given binary image for embedded files and
executable code. Designed for firmware analysis. [Online]. Available:
https://github.com/ReFirmLabs/binwalk

B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu, X. Zhang,
C. Lin, J. Wu et al., “A large-scale empirical analysis of the vul-
nerabilities introduced by third-party components in iot firmware,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 442-454.

1. Angelakopoulos, G. Stringhini, and M. Egele, “Pandawan: Quantifying
progress in linux-based firmware rehosting,” in 33rd USENIX Security
Symposium (USENIX Security 24), 2024, pp. 5859-5876.

Q. Kaiser, “Blackalps 2022: Firmwares are weird. a year long journey to
efficient extraction,” https://www.youtube.com/watch?v=PZ_gw85PcgY,
2022.

E. Bendersky, “pyelftools,” https://github.com/eliben/pyelftools, 2012,
a Python library for working with ELF files and DWARF debugging
information.

B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeat-
able reverse engineering with panda,” in ACSAC PPREW, 2015.

L. Craig, A. Fasano, T. Ballo, T. Leek, B. Dolan-Gavitt, and W. Robert-
son, “Pypanda: Taming the pandamonium of whole system dynamic
analysis,” in Workshop on Binary Analysis Research (BAR), vol. 2021,
2021, p. 21.

G. F. Lyon, “Nmap: Network Mapper,” Open Source Software, 2023,
a security scanner used to discover hosts and services on a computer
network, thereby building a "map” of the network. [Online]. Available:
https://nmap.org/

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS operating systems review, vol. 37, no. 5, pp. 164—177, 2003.

S. Hajnoczi, “virtio-vsock: Zero-configuration host/guest communica-
tion,” in KVM Forum, 2015.

J. Wiesbock, J. Naab, and H. Stubbe, “Virtio-vsock-configuration-
agnostic guest/host communication,” Proceedings of the Seminar Inno-
vative Internet Technologies and Mobile Communications (IITM), pp.
73-78, 2019.

BusyBox Contributors, “BusyBox: The Swiss Army Knife of Embedded
Linux,” Open Source Software, 2023, busyBox combines tiny versions
of many common UNIX utilities into a single small executable. It
provides replacements for most of the utilities you usually find in GNU
fileutils, shellutils, etc. [Online]. Available: https://www.busybox.net/

A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC). 1EEE, 2018, pp. 1-6.

Sylabs Inc., “Singularity: Container for High-Performance Computing,”
Software, 2023, singularity is a container platform designed to
be simple, fast, and secure. It is specifically tailored for high-
performance computing (HPC) environments. [Online]. Available:
https://sylabs.io/singularity/

https://github.com/rehosting/penguin
https://github.com/rehosting/penguin
https://github.com/ReFirmLabs/binwalk
https://www.youtube.com/watch?v=PZ_gw85PcgY
https://github.com/eliben/pyelftools
https://nmap.org/
https://www.busybox.net/
https://sylabs.io/singularity/

APPENDIX

A. Corpus Summary

The firmware corpus used in our large-scale evaluation
contained 13,649 images obtained from vendor websites and
represents firmware from 69 different vendors. Architecture
identification was performed by Penguin.

Count Percentage

Architecture

ARM 4347 31.8%
MIPS Big Endian 3489 25.6%
MIPS Little Endian 2675 19.6%
AARCH64 764 5.6%
MIPS64 Big Endian 161 1.2%
PowerPC 84 0.6%
x86 62 0.5%
x86_64 10 0.1%
Uknown 2057 15.1%

Note: “Unknown” corresponds to firmware where extraction
or architecture identification failed.

Count Percentage

Vendor

ASUS 3927 28.8%
Netgear 2893 21.2%
Gargoyle 1504 11.0%
TPlink 1144 8.4%
Ubiquiti 839 6.1%
DLink 334 2.4%
Trendnet 333 24%
Peplink 279 2.0%
Zyxel 222 1.6%
Linksys 219 1.6%
EnGenius 203 1.5%
Belkin 182 1.3%
Dovado 164 1.2%
Netis 154 1.1%
Other 1252 92%

Note: “Other” includes all vendors that represented less than
1% of our corpus.

B. Configuration Example

Below is an example configuration patch for the StrideLinx
Industrial VPN Router as discussed in Section VI-A. The
configuration includes setting an environment variable telling
the firmware what router variant is to be used, which can
be found using the Dynamic String Search in Section ??.
The configuration also contains the result from our automated
analysis that finds a missing pseudofile, /dev/dsa and
models that device to return as if all 1oct1s on it succeed.

env:
sxid: 0150_5MS-MDM-1
Below is generated automatically
pseudofiles:
/dev/dsa:
ioctl:
nn .
model:
val: O

return_const

C. Filesystem Analysis Details

Architecture When identifying the target architecture, Pen-
guin recursively scans the provided filesystem. This analysis
prefers false negatives in order to heavily reduce likelihood
of false positives. Both the file path and the contents of
the file must look like that of an ELF binary. For the path
check, a binary must either be in a standard directory for
executables (/sbin, /bin, /usr/sbin, or /usr/bin) or
be a shared object or kernel module (have a file extention of
.s0, .ko, or .so.x). The file must then be successfully
be parsed with Python’s elftools library [13]. If all these
checks pass we tally the architecture noted in the header. We
then select the most common architecture, taking a preference
for 64-bit architectures to account for 64-bit firmwares that
utilize backwards compatibility for 32-bit binaries as the 32-
bit binaries may outnumber their 64-bit counterparts.

This style of firmware architecture detection extends the
work of Firmadyne [2], which similarly uses the headers
of ELF binaries present in the firmware to determine the
architecture. Unlike Firmadyne (and the subsequent FirmAE)
we take into consideration that filesystems may, for a variety
of reasons, include binaries intended for other devices. Since
Firmadyne is only concerned with the first binary it can
identify, this can result in incorrect results when attempting
to ascertain the architecture. Similarly, small inaccuracies
can occur due to usage of the file utility as a means of
architecture detection, as any non-ELF file which includes the
name of an architecture in either its path or its metadata can
result in an incorrect architecture being selected.

Init Our default behavior when the init cannot be deter-
mined with certainty is to apply a heuristic in which we search
for a variety of path-based conventions for the naming of init
scripts. This includes the existence of strings such as init
or start in the filename, the exclusion of common false
positives (inittab, directories, restart scripts), and finally
ensuring the candidate is a valid init (marked as executable,
resolvable if a symlink). After filtering down the candidates
we sort by naming conventions indiciating execution order
(preinit over init over rcS) and use path length as a
heuristic for a file being sufficiently important and a global part
of the system, ensuring scripts in overly nested directories are
not choosen over files closer to the root of the filesystem. This
approach of fuzzy matching based on convention allows for
finding a much larger set of init candidates over Firmadyne,

File Path Startup Command
/etc/init.d/uhttpd | /etc/init.d/uhttpd start
/usr/bin/httpd /usr/bin/httpd
/usr/sbin/httpd /usr/sbin/httpd
/bin/goahead /bin/goahead
/bin/alphapd /bin/alphapd

/bin/boa /bin/boa
/usr/sbin/lighttpd

/usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf

TABLE IV: Web Server Startup Commands Added by ForceWWW.

which uses a much simpler approach of customizing the kernel
to run each item in a short, hardcoded list of candidates in
sequence. Our approach also eliminates possible reentrancy
bugs caused by running multiple inits, some of which may
in turn execute each other, such as if /sbin/init runs
/bin/init. In comparison, FirmAE attempts to rectify this
by using strings from the kernel in order to find hardcoded
boot arguments to determine the init path.

ForceWWW Penguin includes an intevention ForceWWW
which includes some light static analysis meant to replicate
FirmAE’s intervention for unexecuted web servers. Our im-
plementation is intended to be an exact replication to ensure
this is not a factor in our evaluation. This approach involves
searching for members of a fixed set of possible web servers
and, if present, the corresponding command will be included in
our startup process. A list of these web servers and commands
is included in Table IV.

Missing Directories Oftentimes rehosting is performed with
partial copies of the device firmware, such as with update
blobs that include only the files and directories that have
changed since the original version of the firmware. In order
to handle those cases Firmadyne introduced a hardcoded
list of directories. FirmAE extends that approach by both
adding to this list of directories and additionally searching
for paths within executables to ensure the needed directories
are present. Penguin reimplements all those interventions with
minimal changes to the logic behind them, with the most
notable change being that modifications to the filesystems
are represented as entries in the configuration file rather than
actually modifying the filesystem directly, which is beneficial
for later iterating on a rehosting. In addition an intervention
is introduced to discover mountpoints used in shell scripts in
order to ensure mount targets are present.

Missing Files Similarly many firmwares depend on a few
common files we attempt to provide if they are not already
present, such as ensuring a bash shell is present and timezone
information is present. We apply an intervention which ensures
files shown to be commonly needed across different firmwares
are included. The /etc/hosts file is also ammended if
needed to ensure it has an entry for localhost. These are
all reimplementations of Firmadyne’s equivelant interventions.
Included below is an example of the resulting changes applied
for fixing a missing directory (/tmp/lock) and missing
timezone configuration (/etc/TZ).

static_files:
#o...
/tmp/lock:
type: dir
mode: 493
/etc/TZ:
type:
contents:
mode: 493
#

inline_file
ESTS5EDT

Shims Penguin utilizes shims as a means of intercepting
entire utilities by replacing them with symlinks to desired
utilities in the filesystem. The original copies are stored so
that either an analyst or the provided replacement can run
them if needed. In some situations shims are used to prevent
unwanted behavior such as restarting or loading incompatible
kernel modules while continuing gracefully. Shims are also
used for performance improvements (cryptography), logging
(bash), and behavior modification (getenv, setenv).

Pseudofiles While our static analysis plugins do not include
any analysis that attempts to properly model pseudofile behav-
ior, we do replace any statically-present pseudofiles, such as
device files, with emulated pseudofiles with default behavior
that has reads return zeroed buffers while writes succeed
but the contents are discarded. In comparison Firmadyne
offers many default devices via kernel modifications, but does
not provide tailored pseudofiles as a part of its execution
environment.

pseudofiles:
/dev/acos _nat_cli:
read:
model: zero
write:
model: discard
ioctl:
Tt
model: return_const
val: O

ABI In order to perform interception of library calls,
libinject must know which ABI the dynamic library it is
intercepting uses. In order to handle this Penguin scans the
filesystem for copies of libc in order to observe all ABIs used

by dynamically linked binaries. From there libinject checks a
combination of e_flags (MIPS) and .ARM.attributes
(ARM) in order to determine the ABI used by libc. A copy
of libinject is built for every ABI observed this way and
the corresponding copy is provided via LD_PRELOAD. This
mechanism is also utilized for enabling library call interception
on mixed-bitwidth systems, such as on 64-bit x86 firmwares
with 32-bit binaries.

Network Interfaces Due to the differences in how Penguin
handles networking compared to its predecessors (see Sec-
tion IV-D2) our approach to discovery of network interfaces is
different. We only need to provide interfaces with the expected
name for the sake of preventing rehosting failures rather than
for actual use. To do this we search for a variety of usage
patterns to discover the names of needed interfaces. First we
search for paths to files under /sys/class/net indicating
the expectation of an interface. Then we search strings present
in binaries on the filesystem for usage of networking tools
including ifconfig, ethtool, route, netstat, and
more to find examples of information about interfaces being
queried.

	Introduction
	Background and Related Work
	Firmware Rehosting
	Transferability of Rehosting Interventions

	System Design
	Filesystem Analysis
	Rehosting as a Configuration
	Static Filesystem Modifications
	Runtime Environment
	Dynamic Analyses

	Implementation
	Extractor
	Static Analysis and Configuration Generation
	Initialization
	File System Preparation

	Penguin Runtime
	Guest Coordination and In-Guest Utilities
	Instrumented Kernel
	Network Communication
	LibInject
	Console
	BusyBox

	Penguin Runtime Plugins
	Configuration Minimization

	Experiments
	Large-Scale Evaluation
	Non-empty Web Server Response
	Evaluation of Filesystem Analyses
	Non-determinism

	Case Studies
	StrideLinx Industrial VPN
	TRENDnet TV-IP201
	D-Link DNS320 NAS

	Limitations and Future Work
	Conclusions
	References
	Appendix
	Corpus Summary
	Configuration Example
	Filesystem Analysis Details

