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Abstract—Both cloud providers and users wish to manage,
monitor, and secure virtualized guest systems. This is typically
accomplished with custom agent programs that run inside a
guest or complex virtual machine introspection (VMI) systems
that operate outside a guest. Agents are limited by the need to
install and maintain them in each guest, while VMI systems
are limited by the need to understand guest kernel internals.
We introduce Hypervisor Dissociative Execution, or HyDE, a
new approach that operates between these extremes to avoid
their limitations and provide a robust and flexible mechanism
to examine and modify a guest from the outside. In the HyDE
model, developers assemble programs that mix out-of-guest
logic with in-guest system calls. These programs are launched
from outside a guest where they are able to co-opt the execution
of guest processes. We present an open-source prototype HyDE
implementation paired with 10 HyDE programs that address
a wide range of user needs from password resets and guest
process enumeration to dynamically generating a software bill
of materials. We evaluate the utility, robustness, and perfor-
mance of HyDE by executing the example programs while
concurrently running standard benchmarks within multiple
guest systems. Our results show that HyDE maintains system
stability and incurs negligible overhead for one-off analyses or
modifications. In persistent operation, HyDE incurs overhead
as low as 7% in a multi-node cloud application benchmark.

1. Introduction

Aho and Ullman argue that “Computer Science is a
science of abstraction — creating the right model for a
problem and devising the appropriate mechanizable tech-
niques to solve it” [1]. In this work, we present Hypervisor
Dissociative Execution (HyDE), a novel hypervisor-based
programming model that provides powerful abstractions for
monitoring and managing the operation of a cloud-based
Virtual Machine.

Infrastructure as a Service (“IaaS”) establishes a clear
division of responsibilities: a provider manages the platform
upon which users run an OS and software of their choos-
ing inside a virtualized guest [2]. It also, ideally, provides
monitoring and management capabilites which are of value
to both users and providers. A number of implementation

options exist to achieve these ends. One is to develop an
agent and mandate its installation in guests. This solution is
not ideal as a compromised tenant could easily circumvent
the agent, possibly even from a guest user program. Another
option is virtual machine introspection (VMI), which can
provide equivalent abilities from outside guests by analyz-
ing their OS memory. However, VMI requires significant
expense to prototype and maintain as it must translate the
raw state of guest memory and registers into meaningful OS
concepts using detailed knowledge of guest internals [3].

In this work, we introduce HyDE, which leverages in-
jected guest system calls as simple building blocks from
which to fashion guest monitoring and management without
the need for agents or VMI. This use of system calls to
bridge the semantic gap is a key innovation, here, serving as
a simple high-level abstract interface from which to quickly
build monitoring and management gadgets. With HyDE, we
simply request the desired information or effect, directly,
from the guest, via a combination of well-understood system
calls and out-of-guest logic. The gadgets are simple, robust,
and typically trivially re-useable across OS versions, despite
requiring no detailed OS knowledge beyond the system call
interface.

HyDE augments a hypervisor with an event-oriented
programming interface that allows injecting syscalls into a
guest while analyzing results on the host. Using this inter-
face, developers can create a variety of “HyDE programs.”
These HyDE programs may query the guest to learn about
its state on demand or be run periodically for sampling-
based cloud-debugging schemes. Alternatively, they may
modify a guest for management purpose (e.g., resetting a
password) or to enforce security policies (e.g., blocking
root processes from listening on external network sock-
ets). HyDE’s programming interface provides abstractions
to mask the significant complexity of reliably co-opting
the execution of multiple guest processes that arises when
working with multicore guests and preemptive multitasking.
Fundamentally, HyDE is not tied to a specific operating
system nor architecture and is sensitive only to changes to
the syscall application binary interface (ABI) and syscall
semantics.

We developed a prototype implementation of HyDE with
support for the x86 64 Linux syscall ABI and designed



10 sample HyDE programs to enable monitoring, managing,
and securing of guest systems. With this prototype, we
evaluate the performance and reliability of multiple guest
systems running various benchmark and test suites while
the guest is monitored and managed by HyDE paired with
each of our HyDE programs.

Across tested guests spanning 3 major Linux kernel
versions and 2 distributions, we find that HyDE programs
successfully accomplish their intended tasks and do not
introduce any unexpected changes into the guests. Our re-
sults show HyDE programs that make a one-time query or
modification add negligible performance impact. For HyDE
programs that persistently monitor or manage a guest, we
find performance overheads as low as 7.4% in a multi-node
cloud performance benchmark.

This paper makes the following contributions:
1) HyDE: A new set of abstractions and a technique for

programming a guest from the hypervisor to analyze
and modify guest state without the need for under-
standing or continually tracking low-level guest kernel
details.

2) A prototype implementation of HyDE targeted at
x86 64 Linux guests.

3) Ten powerful HyDE programs that demonstrate how
HyDE can enable monitoring, management, and secu-
rity of guest systems from a hypervisor.

4) An evaluation of how HyDE and HyDE programs affect
behavior and performance across varied guest systems.

2. Background and Motivation

“Cloud computing” as a term encompasses a broad spec-
trum of models for providing elastic computing resources
to users; however, “Infrastructure as a Service” (IaaS) is
one of the most common. In IaaS, users manage a guest
OS and the software that runs within it. Cloud providers
manage the physical infrastructure and use a hypervisor, or
a virtual machine monitor (VMM), to concurrently run one
or more guests that are isolated from each other [4], [5].
Providers typically utilize hardware-assisted virtualization
features which require the guest to be of the same architec-
ture as the host. As such, most virtualized guests are 64-bit
x86. KVM [6], Xen [7], and VMware [8] are examples of
commonly-used VMMs [9].

In addition to traditional “in-band” interactions where
users launch commands from within their running guests,
cloud providers typically support management-oriented, out-
of-band (OOB) interactions that are initiated from outside
of a guest. VMMs typically support some OOB interactions
around emulated peripherals; however, the utility of such
interfaces depends on an individual guest’s configuration.
For example, a virtual serial console may not be of value if
the guest does not provide a shell on it.

If a user installs a “management agent” within their
guest, additional OOB interactions such as executing a
command within the guest can be performed [10]. However,
agents suffer from three drawbacks: they must be compatible
with the user’s environment, they must be installed with

guest cooperation, and they may be removed or altered
by malicious guest programs. Alternatively, with knowledge
of guest kernel data structure layout and locations, Virtual
Machine Introspection (VMI) [3] enables OOB examination
or modification of guest state from a VMM.

As one example, IaaS providers commonly offer users
an OOB mechanism to reset their guest’s administration ac-
count credentials, such as a password or SSH key. According
to their public documentation (described in Section D.1),
Amazon AWS, Digital Ocean Droplets, and Akamai Con-
nected Cloud all accomplish this by powering off the guest
and modifying the boot disk image. This workflow leads to
downtime and, as noted by Digital Ocean’s documentation,
may not work depending on the guest’s configuration.

Though clearly valuable, existing OOB tooling only
scratches the surface of the functionality that could be pro-
vided from a well-designed OOB interface for guest analysis
and control. Platforms that provide users the (opt-in) ability
to deploy sophisticated custom or pre-built OOB capabili-
ties could gain competitive advantage. Platforms could also
make use of OOB interventions in extraordinary situations,
e.g., for timely remediation of a widespread, critical, and
actively-exploited vulnerability. We believe the HyDE model
outlined in this work is an example of such an interface that
could be used to enable a wide variety of beneficial OOB
capabilities.

3. HyDE: Hypervisor Dissociative Execution
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Figure 1. The HyDE runtime and VMM work together to enable user-
provided HyDE programs to co-opt the execution of guest processes at the
system call interface between the guest processes and guest kernel.

3.1. Assumptions and Threat Model

HyDE runs on a host machine from where it analyzes
and injects syscalls into a guest. As such, the host machine
is trusted and the guest kernel is partly trusted. Guest
applications and users are untrusted. HyDE assumes the
details of the guest kernel’s syscall interface are known.
A malicious guest kernel could violate this assumption and
cause HyDE to produce incorrect results, but a malicious
kernel could not compromise the HyDE VMM. If a guest
kernel is initially trusted, HyDE could be used to restrict
privileged operations from user programs that could be used
to circumvent its syscall interposition (see UntrustedRoot in
Section 5).



3.2. HyDE Design

When any guest process issues a syscall, HyDE can co-
opt the process’s execution by either forcing the guest to
run one or more new system calls, modifying the originally
requested syscall, or both. This design enables a wide range
of solutions to problems that are difficult to solve with
existing tools. Our primary insight is that system calls are
a relatively stable interface as well as the key events that
affect a system’s state. HyDE consists of four components:

• HyDE programs: Developer-created programs to ad-
dress specific problems using HyDE

• The HyDE VMM: A standard VMM extended to
inform the HyDE runtime of guest syscalls and returns

• The HyDE runtime: An application to load, unload,
and manage execution of HyDE programs

• The HyDE SDK: A library for writing HyDE programs

An overview of HyDE is shown in Fig. 1. First, 1 a
user asks the runtime to begin execution of a guest system.
The user may specify one or more HyDE programs to load,
or programs may be provided after a guest has started.
2 The runtime loads the specified HyDE program and

is told which syscalls that program wishes to co-opt and
how. 3 The runtime instructs the VMM to use CPU
virtualization to run the guest, but trap to the VMM when
syscalls are issued and returned from. The guest then begins
or continues its execution. Eventually, 4 a guest process
issues a syscall that traps to the VMM which informs the
runtime of the syscall. If a HyDE program has requested to
co-opt the pending syscall, the runtime allows that program
to potentially inject a new syscall instead. The syscall is
injected by the runtime and VMM which modify the guest
state to replace the original syscall’s details with those of
the injected syscall. After modification, 5 the guest OS
services the syscall. When it finishes, it again 6 traps to
the VMM which invokes the runtime. The runtime informs
the HyDE program of the syscall result and the runtime may
7 decide to inject another syscall or finish its execution.
8 If a new syscall is to be injected, the runtime and VMM

modify the guest such that the original syscall instruction
will be run again and the process repeats from 4 . Alter-
natively, if the HyDE program is finished injecting logic,
9 the guest process is allowed to resume execution from

immediately after the original syscall instruction.

3.3. HyDE Programs

Developers create HyDE programs by writing “co-opter”
functions. These co-opters are asynchronous functions that
execute on the host machine and are instantiated and man-
aged by the HyDE runtime before guest syscalls are exe-
cuted. A key innovation in HyDE’s design is how co-opters
provide an abstraction for developers to co-opt processes
at various scales while taking actions in multiple execution
contexts.

When a guest process issues a syscall that is to be co-
opted, the HyDE runtime instantiates a new instance of the
specified co-opter and begins its execution before the guest
is allowed to continue. The co-opter is provided with details
of the syscall that triggered it and may report or consume
information from its primary execution context, the host
system. The co-opter may also elect to run a syscall inside
the execution context of the guest process that triggered it.
To do so, it yields a syscall object to the HyDE runtime.
The runtime then modifies the guest state such that the
specified syscall will be run, and resumes execution of the
guest process.1 When the injected syscalls returns, the HyDE
runtime extracts the return value and resumes the appro-
priate co-opter instance. With this design, HyDE programs
can co-opt processes at various scales and take actions in
multiple execution contexts. Unlike other approaches, HyDE
programs do not require low-level knowledge of guest kernel
details, only an understanding of its syscall interface. For
many OSes, this interface is well-documented and stable.

1 async PreListen(ctx):
2 uid := yield syscall(getuid)
3 if uid == 0:
4 SocketInfo S
5 yield syscall(getsockname, ctx.args[0], S)
6 if is_remote_socket(S):
7 return -EPERM // Skip original syscall
8 yield ctx.orig_syscall // Run original syscall

Figure 2. Pseudocode for a HyDE co-opter that blocks root processes from
listening on remote sockets. The co-opter executes in both the host and
guest context, and independent instances may concurrently co-opt multiple
guest processes.

Case Study: Low-Privilege Services. Consider the fol-
lowing security policy that a user may wish to enforce on
their system: No process owned by the root user may ever
listen on a remotely-accessible network socket. Such a policy
could be enforced by a customized kernel, a kernel module
configured and built to work with the user’s system, a syscall
sandbox such as seccomp, or a number of other options.
However, each of those options requires invasive modifica-
tions to the guest. Alternatively, a user could enforce this
policy by running a HyDE program from outside the guest
with a co-opter registered to run whenever a guest process
issues the listen syscall. A pseudocode sketch of such a
co-opter is shown in Fig. 2 which uses syscall injection to
identify the current user and examine the state of the socket
that is to be listened on. Depending on its analysis, the co-
opter may allow the syscall to be run or return an error code
to the guest process.

1. A guest process may issue multiple types of the syscall that triggered
the creation of a co-opter. Although an instance of that co-opter already
exists, the HyDE runtime identifies this as an independent execution context
in the guest and instantiates a new, independent instance of the co-opter to
handle the new event. This next instance of the co-opter has independent
state from the first and may run a different code path.



3.4. HyDE Virtual Machine Monitor

HyDE requires its VMM to provide two primitives to
the runtime: a synchronized syscall event stream and an
interface for reading/writing guest state. The stream consists
of two classes of events: syscall entry and syscall exit. At
each event, the runtime may read or write guest registers or
memory if it so chooses and instruct the VMM to resume
execution of the virtual CPU that triggered the event.

3.5. HyDE Runtime

Users interact with the HyDE runtime to start and stop
virtualized guests and to load or unload HyDE programs.
The runtime is responsible for scheduling HyDE co-opters in
response to the syscall event stream from the HyDE VMM.
It is also tasked with mapping syscall exit events to their
corresponding syscall entry event, a challenge that required
solving substantial engineering problems that heretofore
have not been discussed in the literature, which we describe
in Section 4.1.

On syscall entry. The HyDE runtime examines the
register state to identify if this syscall was triggered by a
HyDE co-opter or a guest process. If the event was triggered
by a guest process and the specific syscall is registered to
be co-opted, a new co-opter is instantiated. That co-opter
executes until it provides a syscall to inject. If the event
was triggered by an existing co-opter, the runtime loads
the parameters of the syscall to be injected. In either case,
the runtime modifies the guest state such that the provided
syscall will be run and resumes execution of the guest
process. If neither condition is met, the guest system call
is run as normal.

On syscall exit. When the kernel finishes processing a
syscall, the HyDE runtime examines the guest state to deter-
mine which, if any, HyDE co-opter injected the just-returned
syscall. If such a co-opter exists, the runtime provides it
with the return value of the injected syscall and resumes
execution of the co-opter until it either yields a syscall or
terminates. If the co-opter terminates or the syscall was not
injected by a co-opter, the guest process resumes as normal.
Otherwise, the co-opter specifies another syscall to inject. In
this case, the HyDE runtime modifies guest state such that
the next instruction in the co-opted process will again be
the syscall instruction.2 Upon termination, a co-opter may
request for the runtime to unload the HyDE program that
spawned it.

3.6. HyDE Programming Interface and SDK

HyDE programs are written in C++, compile into shared
libraries, and are loaded by the HyDE runtime. HyDE pro-
grams are required to export an init plugin function which
associates syscalls with co-opter functions. The co-opter

2. To properly support signal handling logic which may trigger before the
subsequent instruction in the co-opted process, these modifications employ
a strategy similar to our state storage technique presented in Section 4.1.

functions are C++20 asynchronous coroutines that yield
syscall objects to execute within the guest.

1 #include <sys/sysinfo.h>
2 #include "hyde_sdk.h"
3

4 SyscallCoroutine guest_info(SyscallCtx* ctx) {
5 struct sysinfo i;
6 yield_syscall(ctx, sysinfo, &i);
7 printf("Uptime %lu\n", i.uptime);
8 printf("# processes: %d\n", i.procs);
9 printf("Load (1/5/15 min): %lu %lu %lu\n",

10 i.loads[0], i.loads[1], i.loads[2]);
11 yield_and_finish(ctx, ctx->pending_sc(),

ExitStatus::FINISHED);
12 }
13

14 bool init_plugin(CoopterMap map) {
15 map[-1] = guest_info; // Before any syscall
16 return true;
17 }

Figure 3. GetSysInfo HyDE program to inject sysinfo before the next guest
syscall and report the results to the host. After the injected syscall returns,
the program unloads itself by returning an ExitStatus of FINISHED, and
the guest program runs the original syscall.

Fig. 3 shows a small HyDE that extracts information
about guest state. This HyDE program injects the sysinfo
syscall before the next syscall is issued by any guest
process. The host buffer i is passed as an argument to
yield_syscall which injects the syscall in the guest and
manages memory synchronization. After the injected syscall
returns, the program prints the result on the host, configures
itself to unload, and runs the originally requested syscall.

While powerful HyDE programs can be created directly
atop the HyDE interface, the HyDE SDK includes three key
features to greatly simplify development of HyDE programs.

Yield from another coroutine. The SDK provides a
macro, yield from, that allows HyDE programs to yield
execution to another coroutine that can inject syscalls into
the guest.

Memory access helpers. The SDK provides coroutines
for reading and writing both fixed-size buffers and null-
terminated strings in guest memory. These helpers are built
upon the reliable guest memory access techniques described
in Section 4.2.

Transparent argument synchronization. Many
syscalls take arguments and/or return values through
pointers to structures or arrays. A co-opter may explicitly
manage these input and output results by injecting a syscall
to allocate a buffer of guest memory, manually populate the
buffer, and then inject a syscall with arguments pointing to
various addresses in that buffer. After the syscall runs, the
co-opter could then copy the results out of guest memory
and deallocate the buffer with another injected syscall.
This process is significantly more complex than standard
C program development, where stack- and heap-based
arguments can easily be passed to functions and directly
accessed.

The HyDE SDK provides yield syscall, a macro for
injecting a syscall into a guest while transparently syn-



chronizing input and output arguments between host and
guest memory. The macro automatically injects the nec-
essary syscall to allocate and copy input arguments into
guest memory. The user-requested syscall is then injected
into the guest, with host pointers replaced by pointers to
the appropriate guest address that was just populated. After
the injected syscall finishes, the value of each argument
is copied back out of the guest’s memory and the corre-
sponding host variables are updated, so long as they are not
marked as const. Subsequent injected syscalls can reuse this
allocated guest memory which is freed when the co-opter
terminates.

3.7. Safety of Co-Opting Guest Processes

For HyDE to be of value, users must be confident that
running a HyDE program will not unexpectedly cause guest
processes to deviate from their normal behavior. At the
same time, users may deploy a HyDE program that makes
an arbitrary modification to their guest as specified by the
program’s developer. To consider the implications of how
HyDE can affect a guest’s behavior, we first distinguish
between two types of co-opters that HyDE programs may
include: state-preserving and state-altering. A state-altering
co-opter injects syscalls or modifies registers/memory, ex-
plicitly modifying guest state. On the other hand, a state-
preserving co-opter only injects syscalls that are not de-
signed to alter guest state.

Although executing a state-preserving co-opter does not
explicitly modify guest state, the execution of a co-opter
may be detected through kernel customization, cross-process
introspection (e.g., ptrace), or side channels. As HyDE is
detectable, we cannot guarantee that guest behavior could
never be altered by running a state-preserving co-opter.
However, when running “reasonable” guest systems that do
not alter their behavior based on cross-process introspection
or side channels, state-preserving co-opters will not cause a
guest system to deviate from its normal execution.3

Unlike state-preserving co-opters, state-altering co-
opters may cause reasonable systems to deviate from their
normal behavior. While this means that these co-opters
are capable of reducing a guest’s stability, it also means
that they can enable a wide range of useful applications
such as resetting a password, modifying a file, or changing
a network configuration. Developers of state-altering co-
opters should precisely understand how the altered state may
impact a guest and communicate those impacts to users.

4. HyDE Implementation

We created an open-source HyDE prototype using
QEMU/KVM [11], [6] with support for virtualized x86 64
guests and a C++ interface for HyDE programs. The imple-
mentation instantiates three of the design-level components
described in Section 3: a HyDE VMM for detecting syscall
events in a virtualized guest, a HyDE runtime for managing

3. We base this claim on the stability evaluation performed in Section 6.

and controlling HyDE programs, and a HyDE SDK to assist
in writing HyDE programs.

The HyDE VMM extends the Kernel Virtual Ma-
chine (KVM) kernel module from Linux 6.2.2 to detect
syscall and sysret instructions. These modifications
were a straightforward extension of Pfoh et al.’s technique
for Intel VT-x. Specifically, the syscall extensions bit is
cleared to force 64-bit x86 guests to trap to the VMM
on each syscall and sysret instruction where those
instructions can be logged and emulated [12]. Beyond the
logic to trap on the syscall and sysret instructions,
we added a mechanism to toggle this mode and to syn-
chronously inform the HyDE runtime when those instruc-
tions are to be executed. The KVM modifications total 299
lines of code. The HyDE runtime is built atop QEMU 7.2
which interacts with the VMM to launch guest systems
and manage HyDE programs. This runtime, implemented
in 2,704 lines of code, allows users to load and unload
HyDE programs while a guest is running. Internally, the
runtime manages initialization and execution of the co-
opters within each HyDE program. Finally, the HyDE SDK
is implemented in 1,408 lines of C++ code.

During implementation, we had to develop novel solu-
tions for reliably tracking syscall state and allowing a VMM
to access guest virtual memory. We describe these in the
remainder of this section.

4.1. Reliably Tracking Syscalls

Detecting syscall and sysret instructions for vir-
tualized guests is a well-studied problem with numerous
solutions [13], [14], [15], [12]. The next challenge is to
map each sysret back to the syscall for which it
is returning. A guest system may be concurrently running
various processes, potentially with multiple threads, spread
across multiple cores. At any point in time, multiple threads
may be waiting for syscalls to return. While a syscall is
pending, a thread may be preempted by the kernel to run a
signal handler or another thread may be scheduled to run.
As such, mapping return values back to the correct syscall
is non-trivial. The literature describes different approaches
for this mapping using various identifiers such as the guest
instruction pointer [14], the address space ID (ASID) for
x86 guests [12], or a combination of the two [15].

Through experimentation, we found these existing tech-
niques to be unreliable as multiple syscalls may be in-flight
concurrently in different threads with identical identifiers or
even within a single thread. For example, multiple threads
may execute a syscall at the same program counter before
another returns. Or a process may be preempted while exe-
cuting a syscall, and a signal handler may execute a second
syscall before the original syscall returns. On multicore
guests, processes may be migrated between cores while
executing a syscall. The ASID cannot be used to track such
syscalls as it may change when a process resumes on its
new core.

To properly handle complex programs and multicore sys-
tems, we devise a new “state-storage” scheme for mapping



each sysret back to its corresponding syscall. When a
guest process issues a syscall that is co-opted by a HyDE
program, HyDE reads and replaces four guest registers be-
fore the syscall instruction is executed. In these registers,
HyDE writes a magic value indicating a potentially co-opted
syscall, a unique identifier for that syscall, the address of
the syscall instruction, and a hash of the identifier and
instruction address. Those values are placed in callee-saved
registers that are not inputs to the syscall. Thus, the
kernel’s logic will not be affected by the register changes,
and those registers will be restored before returning to user
space via sysret. At that sysret instruction, HyDE
examines the register values to identify which syscall is
returning. Notably, this approach supports tracking syscalls
across processors and remains correct in the presence of
signal handlers.

With the ability to reliably map each sysret back to a
corresponding syscall, HyDE can identify when an injected
syscall returns and update the state of both the guest and
the HyDE program that requested the injection.

4.2. Reliably Accessing Guest Memory

Although a VMM has access to a guest’s physical
memory, reliably reading and writing to guest virtual ad-
dresses (GVAs) is challenging as the mapping between
GVAs and guest physical addresses (GPAs) is managed by
the guest. VMMs may walk page tables to recover GVA
to GPA mappings, but these passive approaches may be
insufficient for analyses that wish to access paged out guest
memory or to write to a GPA that aliases to multiple GVAs.

As part of the HyDE interface, we designed two prim-
itives to enable analyses to reliably read and write GVAs
from a VMM. Our first primitive forces the guest to page in
a target address by injecting a syscall that makes the kernel
to examine the target address. This is accomplished with the
access syscall which attempts to read a pointer, then does
some additional checks which are irrelevant to this use case.
A return value of -EFAULT indicates the address is invalid.
Any other return value indicates that the kernel successfully
read, and thus paged in, the memory at the given address.

The second primitive for reliable guest memory ac-
cess arises from a complication caused by demand paging
in the guest OS. This complication involves data that is
initially shared across processes (e.g., anonymous mem-
ory allocation, copy-on-write during fork). For example,
when a process allocates memory via a call to mmap with
the MAP_ANONYMOUS flag, it receives zero-filled memory.
Modern kernels perform this allocation lazily: although mul-
tiple distinct GVAs may be given to processes, those distinct
GVAs will be aliases for the same GPA which is filled with
zeroes and is marked as non-writable. This allows the guest
kernel to allocate physical pages when needed at the first
write. However, when a VMM translates a GVA and directly
accesses the corresponding GPA, it may be accessing a
shared page used by multiple distinct GVAs. Reading from
this page will return the correct data, but writing to it will

write to the shared page, effectively modifying the memory
of all the GVAs that alias the GPA.

To solve this problem, HyDE again uses syscall injec-
tion. Before HyDE allows a HyDE program to write N bytes
to a GVA, it first injects a call to getrandom to write N
bytes of pseudorandom data (from /dev/urandom) to the
destination GVA. This forces the guest to allocate a new
physical page for the GVA if necessary, making it safe to
write to the GVA as it will be backed by a unique GPA.

5. HyDE Programs

In this section, we explore the range of problems HyDE
programs can address, introduce ten HyDE programs we
have created, and describe the design of two in detail.
Table 1 summarizes these programs, listing their name,
description, source lines of code (SLOC) [16], lifetime, and
whether they modify guest state.

HyDE programs can examine and modify guest state
from the VMM to address a variety of problems. One-
off programs complete one task and then terminate, while
persistent programs continue until deactivation by a user.
Unlike one-off programs, persistent programs may introduce
non-negligible performance overheads to the system.

As introduced in Section 3.7, HyDE programs can also
be classified as either state-preserving or state-altering with
respect to guest state. Within the category of state-altering
programs, we identify three distinct classes. The first class
are programs that leverage knowledge about interfaces used
by guest processes to make modifications that are within
the bounds of what the interface could reasonably provide.
For example, the EnvAdder program adds a user-specified
value into the environment of newly created processes. The
second class are programs that make an explicit modifi-
cation to a guest based on a user’s request. For example,
the PWReset program modifies the /etc/shadow file to
change a guest’s root password. So long as the behavior of
these types of programs is communicated to users, the user
bears responsibility for making reasonable modifications to
their system. The final category of state-altering programs
are those that contain developer errors. Such programs may
make subtle modifications to guest state causing guest pro-
cesses to receive unexpected results from the interfaces they
interact with. For example, if a new file was opened and
not closed, subsequently opened file descriptors would be
incremented by one. While state changes such as these may
not always be fatal, reasonable guest processes could deviate
from their expected behavior in unexpected ways when such
changes are present. Unfortunately, distinguishing between
buggy and bug-free programs is a difficult task. We leave
this responsibility to the developers who should use standard
software engineering practices to ensure that their HyDE
programs behave correctly.

Case Study: DSBOM. A problem cloud users face is
understanding what software runs on their system. A “soft-
ware bill of materials” (SBOM) specifies the executables and
libraries that are run by a system. Equipped with an SBOM,



TABLE 1. EXAMPLE HYDE PROGRAMS FOR MONITORING, MANAGING, AND SECURING GUEST SYSTEMS.

Name and Summary SLoC Lifetime State Altering

M
on

ito
r DSBOM: Calculate and report hashes of loaded code 167 Persistent No

FileAccessLog: Log all files accessed by a guest 41 Persistent No
GetSysInfo: Query system uptime and other info from guest kernel 17 One-off No
HyperPS: List current running processes 95 One-off No

Man. PwReset: Change password hash in shadow file 81 One-off Yes

Se
cu

re

2faRoot: Require users to enter code before escalating privileges 144 Persistent Conditionally
EnvAdder: Conditionally add environment variable to processes 80 Persistent Conditionally
NoRootSock: Prevent root users from listening on remote sockets 30 Persistent Conditionally
SecretFile: Conditionally allow guest to read a host file 127 Persistent Conditionally
UntrustedRoot: Prevent privileged actions for all users 124 Persistent Conditionally

a user can identify known-vulnerable components of their
system and plan remediation or patching strategies [17].

DSBOM (Dynamic SBOM) is a HyDE program that
logs the paths and hashes of each executable and library
loaded and run by a guest system. This program co-opts
guest processes as they issue the execve, execveat, or
mmap syscalls. At the execve family of syscalls, DSBOM
opens the target file and reads it in chunks to compute its
hash. The file name and hash are logged outside the guest.
At the mmap syscall, the program checks if the guest is
trying to map data into memory from a file descriptor (e.g.,
a shared library). If so, it uses the readlink syscall on
the /proc/self/fds/<FD> file to determine the path
to the file, then hashes and logs it as before. Variations
on this HyDE program could be created to proactively
scan a file system to compute this material or to enforce
a security policy where components and their hashes are
checked against an existing SBOM before they are allowed
to be loaded by a guest.

Case Study: UntrustedRoot. Cloud guests are often
Internet-facing and long-lived, thus making them attractive
targets for malware that will install and hide itself using a
rootkit [18]. The UntrustedRoot HyDE program is designed
to be loaded after a system has booted and reached a steady
state. Once launched, UntrustedRoot enforces a security
policy where no guest users, including root, can perform
certain actions that are commonly used by rootkits, such as
loading new kernel modules, overriding the dynamic linker,
accessing most device files, and accessing kernel memory
from user space (i.e., /proc/kcore) [19]. This is accom-
plished by co-opting four syscalls to always return -EPERM
and another three to examine arguments and conditionally
block the operation if it is deemed unsafe.

6. Evaluation

Our first set of experiments validates a fundamental
requirement of HyDE: that it is possible to inject syscalls
into a guest without negative side-effects. After establishing
this, we test the correctness and portability of our ten
example HyDE programs by running them with multiple
guest systems. We additionally check for correctness within
the guests by ensuring they pass a complex test suite as
expected. Finally, we conduct a performance evaluation
of HyDE, measuring how syscall injection frequency and

specific HyDE programs affect guest performance across
multiple workloads.

6.1. Test Configuration

All experiments were conducted on a 16-core Intel Xeon
E5-2637 v3 CPU host machine with 377GiB of memory
running Ubuntu 22.04.2 LTS and Linux 6.2.2. We run vir-
tualized guests with different major kernel versions and vary
memory and CPU to run HyDE in multiple configurations:
Ubuntu 23.04.02 LTS with Linux 6.2.0-20-generic, 8 cores,
and 2GiB of memory; Ubuntu 22.04.02 LTS with Linux
5.15.0-67-generic, with 8 cores, 1GiB of memory; and
CentOS Stream 8 with Linux 4.18.0-489.el8.x86 64, with
4 cores, 4GiB of memory.

To evaluate HyDE’s effect on guest behavior and per-
formance, we use a combination of a syscall-intensive test
suite, a syscall microbenchmark, an HTTP server bench-
mark, and a standard cloud workload. We select the GNU
Coreutils test suite [20] to measure if HyDE and HyDE
programs would inadvertently alter guest behavior. We select
version 9.3 for use in both Ubuntu guests and version 8.30
for the CentOS guest as newer versions did not compile on
that system. This test suite dynamically selects appropriate
tests to run depending on guest configuration. Different
tests are selected between the three guest systems, and we
observe minor variance even within identical configurations.
We refer interested readers to Section C for more details.

We measure the per-syscall overhead with lmbench’s
syscall microbenchmarks [21] and evaluate a syscall in-
tensive workload using the Coreutils test suite. To esti-
mate HyDE’s performance impact on cloud applications,
we use the wrk2 HTTP latency benchmark4 and the Graph-
Analytics test from CloudSuite 4.0 [22], [19].

6.2. State-Preserving Syscall Injection

To test our claim that HyDE can inject syscalls into
a guest while preserving correct guest execution, we de-
veloped a simple HyDE program, PerfEval, that injects
the getpid syscall after every N observed syscalls. This
syscall is side-effect free: getpid returns the current pro-
cess ID and should make no other modifications to the pro-
cess that runs it. After getpid completes, PerfEval runs the

4. https://github.com/giltene/wrk2

https://github.com/giltene/wrk2


original syscall in the co-opted process. We run the Ubuntu
22.04 guest with PerfEval loaded and N ∈ {1, 100, 1000}
10 times each.

All of the run Coreutils tests pass in these three config-
urations. These tests not only validate HyDE’s fundamental
requirement of state-preserving syscall injection, they also
demonstrate the reliability of HyDE’s syscall tracking mech-
anism presented in Section 4.1. That is, if HyDE were to in-
correctly track syscall state, the originally-requested syscalls
invoked after getpid could be executed in the wrong con-
text and would trigger failures in the test suite.Furthermore,
we validate that the getpid syscall is being injected into
guest processes using strace inside the guest.

6.3. Correctness and Portability

To evaluate if HyDE and HyDE programs behave cor-
rectly without making detrimental modifications to guest
state, we execute the Coreutils test suite in the presence
of each of our 10 example HyDE programs described in
Section 5 across the three different guest OS/virtual ma-
chine configurations. With each of these HyDE programs,
we design unit tests that run commands in the guest and
examine both input and output of guest results to validate
that the program is behaving correctly. Section A describes
the testing strategies used for each program. For exper-
iments with persistent HyDE programs, we run the unit
test twice, with the Coreutils test suite run between them.
For experiments with one-off HyDE programs, we launch
the Coreutils test suite and load the HyDE program in the
middle of its execution. We then check if the HyDE program
behaved correctly when the Coreutils test finishes. For each
experiment, we check if all Coreutils tests pass and if the
HyDE program unit tests pass.

We collect the Coreutils test suite results with each
of our HyDE programs, HyDE with no programs loaded,
and stock KVM. Each experiment is repeated 10 times
and the results are identical: All Coreutils tests pass as
expected, and all HyDE program unit tests pass for all
guests. When running the EnvAdder HyDE program, one
expected “failure” reliably occurs: the misc/env-S test,
which validates the process’s environment against expected
values. This test failure demonstrates that EnvAdder is, in
fact, working as intended.

The HyDE programs function correctly across all three
guest systems without reducing guest stability. Although
it is beyond the scope of this paper, we have previously
built a HyDE implementation atop an emulator where we
created HyDE programs that were portable across multiple
architectures, endiannesses, and even some OSes. We refer
interested readers to Section B.

6.4. Performance Overhead

Now that we have established that HyDE and HyDE
programs can be used to add functionality to a guest without
reducing its stability, we evaluate the performance overhead

Figure 4. Guest syscall microbenchmark: Syscall execution times reported
by lmbench and averaged across 10 runs in our Ubuntu 22.04 guest. Stock
KVM compared to HyDE’s VMM with no HyDE programs and with
PerfEval injecting a syscall between each of N ∈ [1, 10] guest syscalls.

Figure 5. Coreutils test performance under stock KVM and HyDE with
various HyDE programs across three guests.

of HyDE. We first examine the per-syscall overhead and
then measure how this affects overall system performance.

With the Ubuntu 22.04 system, we use lmbench to
measure the performance of individual guest syscalls when
running HyDE and PerfEval with N ∈ {1, 10}, HyDE with
no HyDE programs, and stock KVM. The results of running
this microbenchmark 10 times for each configuration are
shown in Fig. 4. When HyDE has no HyDE programs
active, its performance is virtually identical to that of stock
KVM. However, when running with HyDE programs, this
microbenchmark shows a per-syscall overhead ranging from
8.5 to 33x that of stock KVM.

To measure the impact of HyDE on a syscall-intensive
workload, we measure the runtime of the Coreutils test
suite for all three guest systems. We measure Coreutils test
runtime with each of our HyDE programs enabled, HyDE
with no HyDE programs, and stock KVM. The results of
running this benchmark 10 times for each configuration are
shown in Fig. 5. Running the HyDE VMM by itself or
with one-off HyDE programs introduces minimal overhead
while persistent programs introduce overhead ranging from
36%− 216%, depending on the program.

To estimate the impact of HyDE’s syscall analysis and
injection on networked applications, we utilize a middle
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Figure 6. A plot of the high dynamic range histogram generated by
the wrk2 benchmark, emphasizing tail latencies. The legend indicates the
median and the 75th percentile, as well as the maximum latency observed.
The benchmark was run for 4000 requests/s for 60 s.

ground between a useful workload and a microbenchmark:
the wrk2 HTTP latency benchmark. We run wrk2 against
the default nginx server, serving its default index.html.
Our test system is a single guest running Ubuntu 22.04
with 4 cores and 8GiB of memory, and we run wkr2 from
the host OS. The wrk2 benchmark is designed to stress-
test web servers by generating a significant load from a
small number of threads. We run wrk2 with its default
setting of 100 simultaneous connections but double the
number of threads from 2 to 4, constant throughput from
2000 requests/s to 4000 requests/s, and run duration from
30 s to 60 s to increase load. We run the HTTP guest
with stock KVM, PerfEval with N = 1, and two HyDE
programs a user may consider running on a web server
(NoRootSock and FileAccess). In Fig. 6, we see that the
more expensive FileAccess HyDE program has a stronger
impact on latency than NoRootSock. This is expected as
FileAccess reads guest memory and writes to the host disk
during its execution. We observe that the tail latencies are
higher for HyDE programs, but a persistent program with a
network security application like NoRootSock demonstrates
acceptable performance compared to baseline. PerfEval has
the worst performance as it injects a superfluous syscall
alongside each application syscall.

To evaluate the impact of HyDE on a realistic cloud
workload, we run the Graph-Analytics test from the Cloud-
Suite benchmark. We run the dockerized version of the
benchmark with the default docker seccomp profile, demon-
strating no conflict between HyDE and seccomp or HyDE
and Docker. In this configuration, we run four co-located
instances of the Ubuntu 22.04 guest connected via a virtual
bridge. To meet the benchmark’s recommended hardware re-
quirements, we configure each guest with 1 core and 20GiB
of memory. To measure worst-case performance impact on
this workload, we run the PerfEval HyDE program with
N = {1, 2, 4, 128} as well as the more realistic, but still
performance intensive, FileAccessLog and 2faRoot HyDE
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Std: 0.05Stock KVM

Mean: 0.98
Std: 0.04Hyde Disabled

Mean: 1.00
Std: 0.05PwReset (10s)

Mean: 1.08
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Std: 0.062faRoot
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Figure 7. CloudSuite 4.0 Graph Analytics Benchmark Results, 30 sam-
ples in each distribution. Distributions normalized to a cluster of virtual
machines running with stock KVM (mean execution time: 80 s). “Perf
Eval” labels correspond to executions run with PerfEval injecting a syscall
between every N guest syscalls. “Hyde Disabled” is the HyDE VMM
with no programs loaded. Other labels correspond to their respective
HyDE program, with “10 s” indicating the one-off “PwReset” program
was executed every 10 seconds.

programs. As an exaggerated test of a user interacting with
a one-off HyDE program during an intense workload, we run
the “PwReset (10 s)” test which resets the user’s password
every 10 s. In all tests with HyDE programs, we enable
those programs for all four guests in the cluster and run
a baseline on the HyDE VMM with HyDE disabled as well
as with stock KVM. Fig. 7 shows that the mean overhead is
∼ 22% for injecting a syscall before every guest syscall. For
the more realistic FileAccessLog and 2faRoot programs, the
overhead is ∼ 9−10%. For PerfEval we compare N = 128
with N = 4 which shows that the performance impact of
syscall injection (as opposed to tracking) quickly tapers off
when syscall injection is less frequent. We observe a negli-
gible impact to mean execution time with the exaggerated
one-off experiment of executing PwReset every 10 s test.

Although HyDE introduces high overhead to the runtime
of syscalls, the majority of a typical guest’s execution is not
spent running syscalls. The CloudSuite benchmark results
show the overhead of standard HyDE programs may be as
low as ∼ 7% on a realistic cloud workload.

6.5. Aside: Reliable Virtual Memory Access

To demonstrate both the prevalence of paged out guest
virtual memory and the reliability of HyDE’s solution de-
scribed in Section 4.2, we run a variation of our FileAc-
cessLog program that attempts to read file paths first using
the standard memory translation interface provided by KVM
and then using our reliable virtual memory access solution.



The program measures the total number of calls to the open
and openat syscalls, the number of times the standard
memory translation interface fails to translate a path name
pointer, and if our solution ever fails.

Across 10 runs of the experiment, we see a total of
3,547,787 calls to these two syscalls and 54,403 path name
pointers that could not be translated by the standard memory
translation interface. While a success rate of 98.47% is high,
failing to read some opened file names could be a fatal flaw
for a monitoring system. Fortunately, when using HyDE’s
reliable memory access solution, we never fail to translate
a path name pointer and successfully read all file names.

7. Discussion

7.1. HyDE versus Guest Agents

IaaS cloud providers offer their own security monitoring
solutions based on guest agents as described in Section D.2.
In addition to standing on its own, we see the robust
programming model and modularity of HyDE as a valuable
contribution to those existing systems, potentially replacing
some of those guest agents. For example, the DSBOM HyDE
program provides information similar to vulnerability audits
performed by those guest agents. HyDE could be used to
provide and maintain trusted logs outside of the guest.

As HyDE builds off the ability to modify and inject
syscalls into a guest from the hypervisor, it is fundamentally
less powerful than a kernel-based guest agent which has
direct access to guest kernel internals and kernel functions.
However, HyDE programs can accomplish many of the same
tasks as guest agents and have several advantages in how
they are designed and deployed.

Unlike standard, kernel-based guest agents, HyDE pro-
grams do not directly interact with internal kernel functions,
instead they operate solely on the well understood and stable
syscall interface. When any guest process attempts to take
some syscall-based action, the HyDE program can examine
syscall arguments, run additional or alternative syscalls or a
modified version of the original syscall.

HyDE programs are compiled for a host machine (which
is expected to be more homogeneous than a collection of
guests), and can be deployed on demand across guest kernel
versions.

7.2. Benefits of the HyDE Paradigm

HyDE programs can provide many of the same results
as guest agents but with four key advantages. Dynamic
deployment: As HyDE programs operate at the VMM level,
they need not be installed prior to use as the VMM can
enable HyDE programs as needed. Decoupled from kernel
internals: Unlike traditional kernel modules that are built
against a specific kernel version, HyDE programs compile
for a host machine and operate without modification across
various guest kernel versions. Logic is opaque to guest:
Unlike in-guest agents, a malicious guest cannot directly

access nor examine the logic of HyDE programs. As such,
HyDE programs can be used to store sensitive information
such as mitigations to non-public vulnerabilities known by
an IaaS provider. Novel security boundaries: Co-option of
guest syscalls creates novel security boundaries and allows
for cloud providers and users to adopt new security models.
As seen in the 2faRoot and SecretFile examples, one can
keep arbitrary information (e.g., cryptographic keys, propri-
etary program logic) outside the guest. The VMM could
also introduce temporal restrictions to prevent certain guest
actions (e.g., as part of a change management process).

7.3. Observing and Circumventing HyDE

As with other VMM-based techniques, HyDE may be
detected by a guest. HyDE is visible to kernel-based infras-
tructures such as ftrace [23] and eBPF [24], in addition to
timing side channels and other side effects from injecting
syscalls. Visibility is not a new threat to VM monitoring and
obfuscation was not a design goal for HyDE. While a guest
could detect the presence of HyDE, it would be difficult for
a guest to reverse engineer the logic of a HyDE program as
the program’s logic lives outside the guest and only injected
syscalls are observable. Furthermore, a (readily observable)
HyDE program could be deployed to block guest processes
from using interfaces that reveal the details of syscalls being
run.

When working with a benign guest kernel, HyDE can
detect, understand, and inject new syscalls into a guest. In
such an environment, all processes that interact with the
guest kernel through the syscall interface are subject to
analysis and modification by HyDE. However, privileged
processes may try to circumvent HyDE by either avoiding or
reconfiguring the syscall interface. For example, an attacker
could load a custom kernel module that adds a non-standard
interface for running syscall logic. Once such a modification
is made to a a guest, HyDE can be bypassed. However, to
make such a modification, the syscall interface must first be
used (e.g., to load a kernel module or access kernel memory)
and such interactions could be analyzed and prevented with
a HyDE program such as the UntrustedRoot example.

7.4. Safety of HyDE

A malicious guest could alter its syscall interface to
interfere with HyDE programs, but such an attack would
only invalidate analysis results and not compromise the host
system. More significantly, a buggy or malicious HyDE pro-
gram could cause a guest to misbehave. As such, developers
of HyDE programs should subject them to standard soft-
ware testing methodologies before deployment and cloud
providers should restrict the ability to run HyDE programs
to trusted users.

7.5. Performance

As discussed in Section 6, HyDE’s overhead is negli-
gible for one-off analyses and transient monitoring. Persis-
tently analyzing all system calls is possible, but the overhead



could be high for syscall-intensive workloads. That said,
performance-oriented memory and CPU-bound applications
are minimally affected as those applications view syscalls as
expensive and attempt to minimize syscall use. Alternative
implementations of HyDE could sacrifice generality for
performance by pushing some logic into the guest.

7.6. Alternative Implementations

While our implementation of HyDE uses a custom
VMM to track and inject guest syscalls, this could also
be accomplished with guest cooperation (e.g., a custom
kernel module, a kernel debugger configured to break at a
guest’s syscall handler). It could even be collected within a
system using built-in syscall tracing and state modification
capabilities (e.g., ptrace). Such an implementation would
require additional development effort to support diverse
guest systems.

8. Limitations and Future Work

Our HyDE implementation demonstrates the value and
power of a syscall-based interface for examining and modi-
fying state from outside a guest but there are limitations and
areas for future work. Like all programs, HyDE programs
may contain logic flaws that lead to unwanted behavior. We
have made no effort to formally verify the correctness of
HyDE programs as we found manual testing sufficient to
ensure correctness of our example programs. More complex
HyDE programs may require the use of automated static and
dynamic analysis tools.

If a guest kernel restricts the ability for a process to
issue syscalls (e.g., with seccomp), subsequently co-opting
that process with a HyDE program may introduce undesired
behavior if prohibited syscalls are injected.

As HyDE is built around the syscall interface, events that
do not use this interface cannot be monitored or modified
by HyDE programs. For example, HyDE could not easily
implement a shared clipboard between a guest and host as
no syscalls are involved in this interaction.

Beyond these limitations, we see several areas for future
work. HyDE performance could potentially be enhanced
through optimization of the syscall event detection logic.
With minor engineering effort, HyDE could be extended to
support additional operating systems such as Windows and
macOS. Additionally, HyDE could be extended to support
analyzing and modifying guest state at non-syscall events
by dynamically patching other logic to trigger placeholder
syscall instructions.

9. Related Work

HyDE advances the state of the art by enabling system-
wide analysis and control of unmodified guests without the
understanding guest internals. However, we are far from the
first to explore the challenges of monitoring and controlling
guest systems.

Garfinkel et al. [3] analyze the behavior of an em-
ulated guest from a VMM using VMI to identify intru-
sions. VMI-based approaches require bridging the semantic
gap [25] which typically requires a deep understanding of
the frequently-changing internals of a guest kernel [26].

With IntroVirt, Joshi et al. [27] identify that VMI can be
supplemented by executing in-guest logic (such as syscalls)
to sidestep parts of the semantic gap. IntroVirt adds break-
points into guest code at events of interest and executes
custom “predicate” programs when the breakpoints are trig-
gered. A snapshot/restore system is used to revert guest
state after each predicate runs. Though these predicates are
conceptually similar to HyDE programs, they are tightly
coupled with low-level guest internals: binaries with debug-
ging symbols are required, and guest functionality is invoked
with direct function calls to guest code.

System call tracing is a common technique for malware
analysis and detection. Bayer et al. [28] and Jiang et al. [15]
demonstrate that syscall traces can be collected from an
emulated guest without the need for VMI by modifying
QEMU. Dinaburg et al. [13] extend this approach to support
virtualized guests.

Gu et al. [29], Carbone et al [30], and Fu et al. [31]
all demonstrate how an isolated, out-of-guest process can
run logic within a guest system using process implant-
ing, function call injection, and system call forwarding,
respectively. While these approaches enable introspection
and modification of the guest system, they differ from HyDE
as they cannot react to specific guest events and lack the
ability to interpose on all guest processes. For example,
these approaches would be unable to enforce a system-wide
security policy like the one described in Fig. 2.

10. Conclusion

We have presented HyDE, a novel approach for pro-
gramming guest processes from a VMM by examining,
modifying, and injecting syscalls. We described the design
of HyDE, detailed our implementation, and presented 10
example programs built atop HyDE.

We thoroughly test HyDE by validating that syscall in-
jection can be state-preserving and then testing the reliability
and performance of guests when running with each example
HyDE program. Our results show that HyDE programs can
accomplish real-world user goals from a VMM without
sacrificing guest reliability. Furthermore, our results show
the HyDE performance overhead to be negligible for one-
off use cases and, for some users, a worthy trade-off for
persistent applications. Through this work, we demonstrated
the reliability and utility of programming guest processes
with syscall injection. To enable others to build off this
framework and deploy this approach to additional problems,
we have released the code for our HyDE implementation and
example HyDE programs.



Availability

Our HyDE implementation, software development kit,
and example programs are available at https://github.com/
AndrewFasano/hyde.
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Appendix A.
Correctness Testing of Example HyDE Pro-
grams

We programmatically evaluate the following questions to
test the correctness of our HyDE programs. Prior to running
any experiments, our infrastructure first runs a guest without
the HyDE program loaded and asserts that the correctness
test fails. After this, the infrastructure runs experiments with
the HyDE program loaded and reports the results of the
correctness tests.

A.1. One-Off Programs

GetSysInfo: Does the number of processes reported during
the test roughly align with the number of processes running
in the guest after the test?
HyperPS: Does the output of running ps in the guest after
the test largely match the HyperPS generated output?
PwReset: After the test, can the root user log in with the
newly set password?

A.2. Persistent Programs

2faRoot: When a guest tries to escalate privileges, does
an out-of-band user have to approve the escalation? If the
request is approved, can the user escalate privileges? If the
request is denied, does the user fail to escalate privileges?
DSBOM: Are accessed files in the guest logged to the host?
Do the hashes of these files match expected values?
EnvAdder: Do newly launched guest processes see the
added environment variable?
FileAccessLog Is a randomly-accessed filename in the guest
logged to the host?
NoRootSock: Does the command sudo nc -lp 80 raise an
error? Can a custom C webserver that binds to port 80 and
drops privileges before listening to the socket successfully
listen for traffic?
SecretFile: Can only some guest processes read the secret
file? Does it contain the correct contents?
UntrustedRoot: Are root users unable to strace a process?

Appendix B.
Emulation-Based HyDE for Cross-Architecture
Guests

Beyond the HyDE implementation described in this
work, we have previously created an implementation of

HyDE atop the QEMU emulator with support for emulated
x86, arm, and mips (big and little endian) guests. This
implementation allowed HyDE programs to be developed
as Python 3 scripts using a similar asynchronous program-
ming model as the HyDE implementation described in this
work. The HyDE-SDK provided with that implementation
included an architecture-neutral interface for creating ab-
stract syscall objects, allowing users to examine and create
syscalls without having to know the details of the underlying
architecture.

We developed three HyDE programs atop this imple-
mentation. The first is the EnvAdder program previously
described. The second, enabled remote user-level interactive
debugging of an target guest processes process from outside
a guest, as if the process were running under gdbserver
. After launching this HyDE program, a user could launch
gdb , connect to the HyDE program’s listening port, and
interactively debug the target process. The third program
would dynamically reconfigure guest network sockets to
transparently use the AF VSOCK address family instead
of AF INET. We evaluated the reliability, portability, and
performance of these three programs across x86 64, ARM,
MIPS big endian and MIPS little endian guests running
Linux and FreeBSD kernels. In total, we evaluated 39 dis-
tinct OSes and kernel versions across these architectures and
found the HyDE programs to behave properly in all tests.
After creating this initial prototype and discovering the value
of HyDE, we elected to reimplement HyDE with support for
virtualized guests as virtualization is widely used.

Appendix C.
Coreutils Test Suite Variance

When conducting our evaluations with Coreutils, by run-
ning make check SUBDIRS=. -k -j $(nproc) as
a non root user, we find different numbers of test are selected
to run across our different guest systems. This is due to
the fact that individual tests have dependencies on system
configuration and the presence of various files and utilities.
Within a single guest, we also observed some variance in
selected tests, even when running with stock KVM. For our
two Ubuntu guests, we see two tests nondeterministically
selected for inclusion in the test suite in the baseline config-
uration. For Centos8 we see four tests nondeterministically
selected. One HyDE program, UntrustedRoot does alter the
number of tests coreutils selects to run. This occurs because
some of the coreutils tests are only run if the guest is able
to take some actions that UntrustedRoot blocks. As such,
coreutils selects approximately ten fewer tests to run. We
present the average number of tests and standard deviation
in Table 2.



TABLE 2. MEAN NUMBER OF TESTS SELECTED TO RUN BY THE
COREUTILS TEST SUITE IN EACH EXPERIMENT.

Ubuntu 23.04 Ubuntu 22.04 CentOS 8

Baseline KVM 517.60 ± 0.70 521.20 ± 0.42 493.10 ± 1.37
HyDE VMM 517.60 ± 0.70 521.50 ± 0.53 493.00 ± 1.63
2faRoot 517.40 ± 0.52 521.30 ± 0.48 493.00 ± 1.05
DSBOM 517.60 ± 0.70 521.20 ± 0.42 492.90 ± 0.88
EnvAdder 517.10 ± 0.32 521.60 ± 0.70 493.00 ± 0.82
FileAccessLog 517.40 ± 0.52 521.40 ± 0.52 493.00 ± 1.05
GetSysinfo 517.60 ± 0.70 521.20 ± 0.42 492.90 ± 0.99
NoRootSocks 517.20 ± 0.42 521.60 ± 0.70 492.60 ± 0.84
HyperPS 517.20 ± 0.42 521.70 ± 0.82 492.60 ± 1.07
PwReset 517.20 ± 0.79 521.70 ± 0.82 492.80 ± 1.03
SecretFile 517.30 ± 0.67 521.60 ± 0.70 492.50 ± 0.71
UntrustedRoot 510.80 ± 0.42 511.20 ± 0.42 484.10 ± 1.10
Overall 516.83 ± 1.91 520.6 ± 2.97 492.13 ± 2.53

Appendix D.
Commercial Cloud Provider Documentation

D.1. Password Reset

Amazon AWS EC2, DigitalOcean, and Linode all pro-
vide password reset mechanisms for their virtualized guests,
though their techniques may fail depending on guest con-
figuration. Documentation for these features is available at

• https://docs.aws.amazon.com/systems-manager/latest/
userguide/automation-ec2reset.html

• https://docs.digitalocean.com/support/
how-do-i-reset-my-droplets-root-password/

• https://www.linode.com/docs/products/compute/
compute-instances/guides/reset-root-password/

D.2. Security Monitoring

Amazon and Google both provide agents that can
be installed within a guest to provide security fea-
tures. Amazon’s guest agent is called Inspector: https://
aws.amazon.com/inspector/ while Google provides “secu-
rity software agents”: https://cloud.google.com/marketplace/
docs/deploy-security-software-agents.
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